Version Control with Subversion

For Subversion 1.7

(Compiled from r4340)

Ben Collins-Sussman
Brian W. Fitzpatrick
C. Michael Pilato

Version Control with Subversion: For Subversion 1.7: (Compiled from r4340)
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Filato

Copyright © 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael
Pilato

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by/2.0/

Table of Contents

0111V o PR Xii
== ot PP Xiv
Wt 1S SUDVEISIONT ..ottt ettt et et e et b e ettt et aa e e e et e e et e e e bareeaa e een e eeebnaaeanaees Xiv
IS SUBVErSION the RIGNE TOOI?eeiee e e e e e e e e e et e e e eanes Xiv
W10 = o g] T (oY XV
SUBVEIrSION'S ATCIITECLUIE ...ttt e et e et e e e et e e e e et e e e e et eas XV
SUDVErSION'S COMPONENES ... eettieteett ettt ettt e e ettt et e et et e et e e et e bt e et et e et et e et et e e e eban s XVii
What's NEW IN SUDVEISIONeeniiieei e et e e et e e et e et e e e eb e e e e aeens XVii

F N E o 1= o To ST TUPPRPN Xviii
HOW t0 REAA TRIS BOOKttt ettt et e e e e et e e et e e eaaeaees XViii
(@0 114= (o] Jo N I £ = o o) Xix
I 0] 2700 S B o =PRI XX
ACKNOWIEAGMENES ...ttt e ettt e et e e et et e e e et b e e e e et e e e e et e e e e eba e XXi
1. FUNCAMENEEI CONCEPILS ... eeeet ettt ettt ettt ettt ettt ettt e et et ettt s e et e bt e et b e e et bb e et e b e et e b e e e eba e 1
VEISION CONIIOl BBSICS ...ttt ettt ettt e ettt ettt e et e et e e eh e e et e e et e et tareeeb e e et e e ebn e eeaneennns 1
B I LS (= 10 1 (o Y 1

LIS AT L o o VP 2

RV 2= £ o g aTo 1Y/ oo 1= 2
Version Control the SUDVEISION WEYiiiiii et et e e et e eeeaa e e eenes 7
SUDVEISION REPOSITONES ...ttt ettt ettt e et e e et b e e et et e e e e et e e e e era s 7
REVISIONS ...t et e e e e et e et et et et et a e et et e e e an e e et e eanaaees 7
AdAressing the REPOSITONYiieiiiiiiie e e e e e e e e e e e e et e e e e e e e et e e eenaeenees 8
SUBVErSION WOTKING COPIES ...evvueeeiieei et e et e e e e et e et e e e e e e e e e et e e et e e e et e e et e e et s e et e etn e eatneeennnes 9

S 010107 Y/ 14
2. BASIC USAOR ... eiti ittt et et e e e 15
= o PR 15
Getting Datainto Y OUIr REPOSITONY ... ettt ettt e ettt e et e e et e e e bt e et ettt e e e et e e et e e ebn e e eenaaanaaes 16
IMPOrting FileS and DITECLOMESieeii e e e e e e e e e e et e et e e e e e e e eaeees 16
Recommended REPOSITONY LAYOULceuuiiiiieiiieeis e e s e et e e e e e e e e e e et s e e e et e e et e e eaneeetn e eaneaannaees 17
WHEE'S IN@NGIMIE? ...t e ettt e e et et e e e e et e e e e et r e e e eataneeeeateneeeentnnaaeees 17
Creating @WOIKING CODPYeeeteeeeii ettt ettt e et e ettt e e ettt e e et et e e e e et e e et et e e e e et e e e e eban s 18
BaSICWOIK CYCIE ..ottt ettt et et e e e aaaas 19
Update Y OUF WOIKING COPY ... eeueeineeit ettt ettt e e e et e e e et e e et e e et e e e aa e e an e e et e eeanaaenns 20

= SR o TN [O o = 20
Y= YA o 0| GO - o L= 22

FIX Y OUN MISEBKES ...ttt ettt e e et e e e et n e e e et n e e e et aeeeaeens 25
RESOIVE ANY CONFIICES ...ttt et e e et et et e e e et e e eaaans 26
COMMIT Y OUI CRBNGES ... ettt ettt e et e e et e e et et e e et et e e et et e e e e ebaas 33
s 01T T 0o [T (o] o PP 34
Examining the Details of HiStorical Changesocuuiiiiiii e e e e 34
Generating aList of HIStOrical ChanQEScvvuiiiiiieii e e e e e e e e e e e e an s 36
BrowWSING the REPOSITONY ... iieuiieiii e e e e e s e e e e e e et e e e e an e e eet e e et e eetn s eeaneaenaees 38
Fetching Older REPOSITOrY SNEPSNOLSiiiiiieieiii ettt et et e e e e e e eaaens 39
Sometimes You JUSE NER 10 CleBN UP ..iiiiiiiiiii ettt e e e 40
DispoSing Of @WOIKING COPY .. .eeeniitieiteeei et e ettt e e e et e et e e aa e e et e e et e e ebn e e eanaaenaaes 40
Recovering from an INtEITUPLIONiiuiii e e e e e e e e e e e et e e e e e eaeees 40
Dealing With SErUCTUral CONFIICESiuvuiiiiii e e e e e e e e e et e et e e et e e e e eanas 41
AN EXamPle Tre@ CONFIICEvvu i e e e e e e e e e e e e e et e e e e eanes 41
SUMIMIBIY ettt ettt ettt ettt et e e ettt e et e et n et e e e e e e et et e e e e e e e an e 46
Yo 1V Lo o B e o s ST P T PP SOPPTTRN 47
REVISION SPECITIENS ...ttt et e et et e e et et e et e et ta e e et e e et e e et e ean e eanas 47
e V7S Ko L T =AY 0 {0 47
S Y S Lo [D - =SSP UPPPR 48

Version Control with Subversion

Peg and OPErativVe REVISIONSiiiiiiii e e e e e et e e e e e e e e e et e e et e e e e e e aa e e et e e aan e eetn e eaneennnas 49
0] =S 53
QY 00 = = PP ROUPPTPRUPRIN 54
ManipUIBLING PrOPEITIESeeuiiiiit ettt ettt ettt ettt et e e et e e et et e e e et e e e aab e e ennans 55
Properties and the SUDVErSioN WOTKFIOW e e e e 58
AULOMELIC PrOPEItY SEITING ...ceeuietieetie ittt et e et e et e et e et et et e e et e e et e ean e ean s 60

= o 7= o] 1) Y SRS 61
X 0] 1= A I o= S 61

FIlE EXECULBIIITY ...eeetieeeeei ettt et et e e e e e e eaaans 62
ENd-0f-Line CharaCter SEOUENCESccouuuieiiiii ettt ettt ettt ettt ettt e e et ettt et e et e e e ene e e eanens 62
1gNOrNG UNVEIrSIONEA TTEIMS ...ttt ettt et e et e et e et e e ta e e et e e et e e et e ean e ennnns 63
[VATV (0 S 1= 11 oo 67
S 0= TS <l I T 1= ot (] =S 70
0o (1 o 75
CrealiNg LOCKS ... et 76
DiISCOVEITNG LOCKS ..ettieeiittii ettt ettt ettt ettt ettt e et e et e et et e et e n e e e e e e e e e anb e e e ennans 78
Breaking and StEaliNG LOCKSceuuiitiieiii ettt et e et e e e et e et e e et e e et e e e e e an e 79

LOCK COMMIUNICELION ...ttt ettt ettt ettt e et e ettt et et e e et e e et e e et e e e baaeeeaeeenaaes 81
EXErNalS DEFINITIONSiiiiiiiiiiiii et ettt et et e e e e et e e e e et e e e e et e e e e aanaeeenenns 82
L1371 10 T T £ 88
Creating and Modifying ChangeliStSuuioiiiiiiie e 88
Changelists AS OPEration FIITEIS it e e 90
Changelist LIMITAIIONSiietieii ettt et e et e et e et e et e e e ta e e et e e ea e e et e ean e eenas 92

L= o4 Q1Y e o = PP 92
S0 [0 LCs Y= 00 === o 0] 15 = S 92
ClIENE CrEOENLIAlS ... ettt e e e e et e e e et e e e et e e et e e e et 93
SUMIMIBIY ettt ettt ettt ettt e ettt e et e et r et e e e e et et e e e e e e e e an e 95
4. Branching @0 IMEIGINGuoeeeetnieeiiite ettt ettt e e ettt e e ettt e e et et e e ettt r e e et et e e et ee bt e et eebeteeees bt e e e eebnreeeentnaaeeee 97
What'S @BIranCR? ... e e ettt e e et et e et et e e e eaas 97
L ES o = 7= = 97
(0= 1o 1= 1 2 = 1o o 99
WOrKing With YOUF BIaNCRuuiii et e e e e e e e e e e e e et e e e et e e e e eeens 100

The Key Concepts Behind BranChingcooouueiiiiiiie et 103

= S Lol 1V = o] oo PP OPPP TP PPPPTTRPPPIN 103
(014 1010 1= (PP PTPPPRN 103
Keeping aBranCh iN SYNC et e et e e e an s 104
ReEINtEGrating @BranCh oo e e e 109
MErgEINTO AN PrEVIEIWS ... iie et e e e e e e e e e e e e e e e e e e s e et e e e e e et a e e e eean s 111
(8T To ol oo @ P>l L= PSPPI 114
ReSUITeCting DElEtE [TEIMSt ettt e e et e e et e e e e ab e e e enta e eeee 115

F o\ g (oo 1Y L= (0T o PP 117
10101 1 07/ o TTo! (] oo TR PP UPPTPPTRPPN 117
Merge Syntax: FUIL DISCIOSUIEiiii et e e e e e e e e e e e e et e et e e e e e et e e e e ean s 119
Merges WithOUt MEIGEINTOiiieici e e e e e e e e e e e e e et e e e ean s 120

MOrE 0N MENGE CONFIICES ..ottt et et e e et e et e e e e et e e e eaaa e eeens 121
BIOCKING CRANGESoeiiieiiie et ettt ettt e e ettt e e e e et t e et e abareeeentanaeeee 123
Keeping aReintegrated BranCh AlIVEco. i e 124
Merge-Sensitive Logs and ANNOLELIONSccuiiiuiiiiiei e e e e e e e e e e e e e e e et e eaeeanns 125

[\ o1 T qTe o g Ko laTo ghaTe [N o o= i o 127

Y 0 oS3 o Y Y= 128
Blocking Merge-UnNaWare CHENESo.uuiiiiiiiiee ettt e e et e e e e ab e e e enta e eeens 128

The Final Word 0N Merge TraCKiNgcc.uuieiiiiiieeiit ettt ettt e e e e e e 129
TraVerSiNG BranChES ... i e et e et e et e e e e et e e et e e et e e et e e ea e eeaaaes 130
=0 = T PRSPPI 132
(O L To T S T] o) L= I PP 132
(@ Lo Jr= @] 1oL I [P 132
2= 1o ATV = T 1= 7= o= 133
REPOSITONY LBYOUL ...ttt ittt ettt ettt ettt e e ettt e e et et r e e et et neeeenbe s e e eentnneeeee 133

Version Control with Subversion

DL = I = (0= PPRTRPPPIN 134
Common BranChing PatternSoiiieiiiii e e e e e e e e e e e et e e et e et e e et e e et e eanneean s 135
REIEESE BIraNChESceiiiiiieii et e 135
s 01 Lol 2 =T o == PP 136
V4= 00 (o g = = 14 = PP PTPPTN 136
General Vendor Branch Management ProCEAUNEcouuviuiiiniii i e e e e ees 137

Y T o= o o1 £ o PP 139

R 010107 Y/ 140
5. REPOSITONY AQMINISITAIION ...ttt et et e ettt s ettt e et e b e e et b e e e e bb e e e e b s 142
The Subversion REPOSITOrY, DEFINEiiiiiii et 142
Strategies for RepOSItOry DEPIOYMENT it e et e e e et e e et e e e e ean s 143
Planning Y our REPOSITOry OrganiZationceeusoieuneeie ettt e e e et e e e et e e e et e eaa e een s 143
Deciding Where and How t0 HOSt YOUr REPOSITONYvvvuiieiieii i e e e s e e e e e e e eanes 145
(01910701 T o[- WD = S (o = T 146
Creating and Configuring Y OUF REDOSITONYceeuuuieiiii ettt ettt e et e e e et e e e eaa s 149
Creating the REPOSITONY ... iieiiee ittt ettt ettt et a ettt e et et e e e et e e e eaa s 149
Implementing REPOSITONY HOOKSiiuiiiie ettt e e e e e een s 150
Berkeley DB ConfigUIaionveeiiiiieie et e e e e e e e e e e et e e e et e et e eneeanns 151
S ST @0 1o U= o] o 151

S 01015 10 VALY, = 1= 7= (o 151
F N AN [0 T T (= o) T oo 151
Commit LOG MESSAGE COMECIION ...eevtueiiiit et ettt ettt ettt e et et e et et e ettt e et et e e e eaa s 155
MaNAGING DISK SPACE ... ctuiiiieiit ettt et et e e et et e et e e e e e e ean s 156
BEIKEIEY DB RECOVEIY ..vuiiiiiiiit ettt ettt e e e e e e e e e e et e e e e et e e e et e et e et e et eenaeanns 159
Migrating Repository Data EISBWHEIEcovniiiii e e e 160
Filtering REPOSITONY HIStOYccueiiiiiiei e et e e e e e e e e e et e et e e e e e et a e e eeen s 165
REPOSITONY REDIICAIION ...ttt e et e et e et e e et e e e e ab e e e eata e eeees 168
REPOSITONY BACKUD ...ttt ettt ettt e ettt e e et et r e e ettt r e e e enbeneeeentaneeeee 175
Managing REPOSITONY UUIDSttt e e e et e e e e e et e e e e ean s 176
Moving and REMOVING REPOSITONESuuiiiieiiiie ettt e e et et et e et e e et e e et e e eanaaeens 177
S 0] 0107 Y/ 177
LSS V7= B Oo 011 To 0 =1 o o 179
L@ < Y 179
Choosing @ Server CONFIGUIBLIONieeee et eett ettt ettt et e et b e e e et e et e e e e e b e e e ene s 180
BRSNS S A RS = AV PP 180
SVNSEIVE OVEN SSH ...ttt ettt ettt ettt et et et e et e et e e et e et et e e a e e e e e eees 180

BTN = o 1] I I RS = Y= 181
RECOMMENTELIONSeve et et e et e e e e e e bt e e et et r e e e eatereeeeabn s e eeeatnneeeees 181

S g S A S L O s (0] 1 (1S~ Y= S 182
INVOKING ThE SEIVET .ttt e et e et e e et et e e e e abreeeenba e eeees 182
Built-in Authentication and AULNOMTZBEIONc..uiiiti e e an s 186
USING SVNSENVE WITN SA S oot e e e et e et e e e e e e e et e e e e e neaneeanns 188

LI 101 = 1T o 0LV /= S 190

S o I Oe 1 1Te 0= o g T N PR 192
httpd, the APAChE HT TP SEIVEY ... ettt e et e et e e e e e eaaans 193
PrEIEOUISITES ..ottt e et ettt et e et e et e e e ab e e eab e aaee 194

BasiC APache CONFIQUIELIONiie e ettt e e et e et e e e e e et e e e e ean s 194
AULNENTICEEION OPLIONS ...ttt et ettt e e e et et e e et e e et e e e e et tn e e e et e eeaneaenas 196

W11 gz (0] @ o1 o] = 199
Protecting network traffic With SSLoiiiiii e e 202
= 0o o == 204
Path-Based AULNOIIZAIONiiueiii et e et e et e e et e e et e e ea e e et e e eaneeenns 211
(Lo g B T= Y I oo o1 1o RSP PPRPT 216
S 4V S @ 1111 114 o] o I PP 218
D= = O o o1 1o [218
Network ComMpPreSSION OF D@LAcvvvuieiiieii e e e e e e e e e e e e e e e e e een s 219
Supporting Multiple Repository ACCESS MENOUSuuiiiiiiiciii e 219
7. Customizing Y our SUDVErSION EXPEITENCEcevuuiiiiii ettt ettt ettt ettt e e et e e e e e e b s 221

Vi

Version Control with Subversion

gL =X @0 g Lo U= o) AN == P 221
Configuration ATEALEAYOULciueeiiiieii et et e e et e e e e et e e e e e et e e et e e ea e eetn e eaneeaneees 221
Configuration and the WINdOWS REGISIIYciieuiiiii e 222
CoNfiGUIATION OPLIONS ...ttt ettt ettt ettt et e e e e et et e et et e e et be e e e et eeeena s 223

(o To= T2 1 o] o PSPPI 228
L0010 = 6= =T To [F o T o= | =S 229
SUBVErSION'SUSE Of LOCAIESvvuiiiiiii ettt ettt e et e e et e e et e e e eaan s 229

L LS T g0 g = o T o 230

Using External Differencing and Merge TOOISuuiiiiiitiiiiiii ettt e et e e e e 231
= o [PP 232
= = o T TP 233
L 7= 11 (0T 234

S 0] 107/ 235

S 1070 (o T 1o TS T 0177 £ T o 236

Layered Library DESION .. .cceui ettt et ettt e ettt e e ettt e e et et e e et et e e e et e e e e a b e e eaba e aee 236
S Lo (oY I = PP TPPPPTRTPPPIN 237
REPOSITONY ACCESS LAY O ... ittt ettt et e e et e e e et e et e e et e e e e ean s 240
L0 1= | B - 1Y 241

L LS T 0T I 1T 242
The Apache Portable RUNIME LIDIaryocoouiiiiii i e e e e eaes 242
g Tox 0] 1SR g To [== o] 243
URL and Path REQUITEIMENTSeuuiiiiiii ettt ettt ettt ettt e e ettt e e e e et e e e rne e e eneens 243
Using Languages Other Than € and CHoueiiii ettt et e e e e e e e e 243
1000 [0] o] = PP UPPTPPTRN 244

S 0] 0107 Y/ 250

9. SUBVErSioN COMPIELE REFEIENCE ... ivvuiiiii et ee e e et e e e e e e e e e e e e e et e e et e e et s e e e e an s e aetneeeaneeenns 251

svn—Subversion Command-Line CHENtooiiiii e e e e e e e e et e e e e eneees 251
SV OPLIONS ...ttt ettt ettt oottt et e ettt e e et e e et e e e eaa s 251
SVN SUBCOMIMANGS ...t e ettt e e et e e et e e et e e et e e aaeeanaees 258

svnadmin—Subversion Repository AAMINISIFLIONco..iiiiie e 335
Y=o L0 0T T KO o140 PR 335
SVNAAMIN SUDCOMIMANSeeitiee ettt ettt e et e ettt e e ettt e e e e bb e e e et e eeeaan s 336

SvNlook—Subversion REPOSItOrY EXAMINGLIONcccouuiiiiiiii it 359
SVNTOOK OPIONS ...ttt ettt ettt ettt e ettt e ettt e e et et e e et et e e et e b e e e e et e e e e eaa s 359
SVNIOOK SUDCOMIMANGS ...t ettt e e e et e e et e e et e e et e e e aneeanaaes 361

SVNSyNC—SUbVErsion REPOSITOrY MITTOITNGuuiiiieiii ettt et et e e e et e e e e ean s 380
Y0157 0w o1 o) 1 PP 380
SVNSYNC SUDCOMIMBINAS ... eevueeieeiit e e e e e e e e et s e et e e e e e et e e e e e et e e et reean e e e tn s e e et e e eanaeetn s eeanneeannaees 382

svnrdump—Remote Subversion RepoSitory Data Migrationocoieueieeiiiiieeeiiie et 390
SVNIAUMP OPLIONS ...ttt ettt et e et e e et e e et et e e ettt e e et et e e e e et e e e e enan s 390
SVNIAUMP SUDCOMIMENGS ...ttt ettt e et e ettt e et e e e ta e e e et e e et e e ebn e e eaneaenaaes 391

SVNSErVE—CUSIOM SUDVEISION SEIVEY ...ttt ettt et e e e e et e e et e e e e ean s 394
Y10 =YL= Y o)1) PP 395

svndumpfilter—Subversion History FIITErNGcveueiiii e e e e e e 396
SVNAUMPFITTEr OPLIONS ...ttt e e et e e et e e e et e e e eaa s 396
SVNAUMPFITtEr SUDCOMIMEANAScceite ettt e e ettt e e e e e e e s 397

svnversion—Subversion Working Copy Version INfOiiiiiii e 402

mod_dav_svn—Subversion Apache HTTP Server MoaUIEoouniiiiiii e 404

mod_authz_svn—Subversion Apache HTTP Authorization Modulecooviiiiiiiiiiii e, 407

ST o)== o I 0] 0= =S 408
VErSIONEA PrOPEITIES ...t e et e et e e et e eeeaa s 408
UNVErSIONE PrOPEITIESee ittt et ettt ettt e e e et e e e nae e e eneans 409

S 00 L0 Y (070 G PSPPI 410

A. SUbVErSION QUICK-SEA GUITEieiiiieiiie et e e e e e e e e e e e et e et e et e e e et e et e aneanns 420

TS = T 1o TS W01/ £ T o 420

L T T =0 I)4 T 421

B. SUDVEISION FOr CV S USEIS ...iiiiiiiiiieiie ettt ettt e e e e et e e et e e e e e e e e et e e et e e e tn e e e eaeean e e et neeanneeenns 423
Revision NUmMbers Are DIfferEnt NOWoooue e et e e e e e e eees 423

Vii

Version Control with Subversion

DR = o (0 VALY A= £ o] 1= 423

More DiSCONNECIE OPEIELIONScveeuieeueiei et e e e e e e e e e et e e e e e et e e et e e et e e et e e ean e eetnaeeaneeenaeeetneeennaaenns 424
Distinction Between StatuS and UPAEEEuuuiiiiiiiiieiii et e et e e et e e eaa e eees 424
= LU PSPPI 424

L]0 - 1= SRR 425

BranChES @GN0 TAOS ..ivuiiiniii it e et et e et e e e e et e et e e e e e et e et e e e e e e a e e anas 425

Y 0 = W 0 0= 1= 426

L0000 [Tor a2 =-=o [o PP 426
Binary FI1eS and TranSIationooiouiiiiiii e ettt 426

V4= 5 Mol a= o 1Y, oo (U1 = PR 426

F T 1107 01T or= 1 o o PP 427
Converting a Repository from CV S 10 SUDVEISIONc.uuiitiiiiee et e e e e s 427

C. WEDDAYV QN0 AULOVEISIONING ..vvnirtnereteetteeetnaestneeetnsesatesaseeetaaeetnaeetneeaneeanaeetnaeeanaeetneeaneeaneretnaernnaesnns 428
WL ISWEDDAV ? .ot e ettt e e e et e e et et e e e e et e e ettt e e e e et e e e e eaa s 428

FN 0 10V = Yo] oo PSPPSR 429
Client INEErOPEIaITITYttt et et et e e et e e e e e e 430
Standalone WEDDAY APPIICALTIONSceuuiiiieeie et e et e e e e e et e e e e eaa e 431
File-EXplorer WEDDAV EXIENSIONSccuuiiiiiiii ettt et et e et e et e e et e et e e e e ean s 432

WEebDAV Filesystem IMPlEMENtELiONiiiiiieiii e e e e e e e e e e e et e e e ean s 433

D 20 @70 Y/ o | 435
T 440

viii

List of Figures

ST Y = o g R o)= o (1 = PP XV
O N Y o o o T 017 = Y= S = o 1
1.2. The ProbIEM tO QYOI ... oo ettt ettt e e et e et e b e e e et e e e et e 2
1.3. The [ock-mOodify-UNIOCK SOIULIONcuuiieiiiii e ettt e et e e et e e e e e e 3
1.4. The copy-mOdify-Merge SOIULIONcuu e e et e et et e e et e e et e e ea e e et e eanaaeenns 5
1.5. The copy-modify-merge solution (CONtINUE)couiiiiiiiii i e e e e e e 5
G = = 7= 010 TS0 V= (0 1= 7
A I 0 TC T = oot (0 VAR =S (= 11
4.1, Branches Of DeVEIOPIMENLcootuiiiiii e ettt e e et e e ettt e et ea b e e e et b e e e eeta e e eeabnaaeeees 97
4.2, SEArtiNG FEPOSITONY TAYOULceeetteeeiit ettt ettt ettt e e et et e e et et e e e eebar e e e estareeeeetnreeeentnnaeeee 98
4.3. REPOSITONY WIth NMEW COPY ... ettt ettt et ettt e et e et e ettt e et e e e et e e et e e et e e ean e e ebnneeenaeennaaes 99
4.4. The branching of ONE fIlESNISIONYuuiiii e e e aaas 101
8.1. Filesand directorieS in tWo GiMENSIONSc.uuuiiiii et e e et e e et e e et e e e et e e e et aas 238
8.2. Versioning time—the third dimension!coiiiiiiii e e e e e e e e e eans 239

List of Tables

O = o0 (0] V= oot == U 8
225 I @)1 T 40 T oo [=0 0TS 36
4.1. Branching and merging COMIMANTSccouuuuiiiiiite ittt et e e e et e et e e et et e e e e et e e e e et e e e aenenas 140
5.1. RePOSItOry data StOre COMPAITSONceuuueteettneteeti ettt e e e et e et et e et e eb e et e tb e ettt e et e bb e et e b e e e e ebb e e e ebeees 146
6.1. Comparison Of SUDVErSION SEIVEN OPLIONSc.uuieii ittt ettt e e e et e e et e e e e e e et e e aa e e an e aetneaeanaaenns 179
C.1. CommON WEBDAYV CHIENES ...ttt ettt e et e e e e e e rere s 430

List of Examples

4.1. Merge-tracking gatekeeper start-Commit hOOK SCHPLcovuiiiiiiiiii e e e e e e eaes 129
5.1. txn-info.sh (reporting outstanding traNSACtIONS)vvueiiii e e e e e e e e e e e e e e e eeans 157
5.2. Mirror repository's pre-revprop-change hoOK SCHIPLuu i 169
5.3. Mirror repository's start-Commit NOOK STc.uuuiiiiii et e e e e e 170
6.1. A sample svnserve launchd job definition ... e 185
6.2. A sample configuration fOr @aNONYMOUS BCCESScvuiineiieit ettt e e e e e e e et e e et e et e et e et e et e an e e e eaneeaneeaeees 200
6.3. A sample configuration for authentiCated GCCESSiuvuiii e e e e e e e e eaes 201
6.4. A sample configuration for mixed authenti Cated/anonNyMOUS @CCESSu.vvveririueeiiieeeiiee e e e e e e e e e et e e eeans 201
6.5. Disabling path CheCKS AlTOGEINENo e e et e e et e b s 202
7.1. Sample registration entrieS (.reg) TIlE e e e 222
Ao L1 = o oY PP 232
2 T 1 AT = 1 o - 233
o T 7T/ = 1 233
8 30 L7/ = 1« - 234
LA 0= (0 =T = o PP 234
T A (= (e =T = o o PSP PPPTTR 235
8.1. USING the FEPOSITONY [BYEN ... ittt et e et et e et e e et e e et e e e e e e et e e e et e e eanaaenes 244
8.2. Using the repository layer With PYthON ... e e e e 246
G AN Y1 10 TS = [0S - 11 = 248

Xi

Foreword

Karl Fogel
Chicago, March 14, 2004.

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions people actually ask, but of the ques-
tions the FAQ's author wishes people would ask. Perhaps you've seen the type before:

Q: How can | use Glorbosoft XY Z to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity through our patented office group-
ware innovations. The answer is simple. First, click on the File menu, scroll down to In-
crease Productivity,then...

The problem with such FAQs isthat they are not, in aliteral sense, FAQs at al. No one ever called the tech support line and asked,
“How can we maximize productivity?’ Rather, people asked highly specific questions, such as “How can we change the calendar-
ing system to send reminders two days in advance instead of one?’ and so on. But it'salot easier to make up imaginary Frequently
Asked Questions than it is to discover the real ones. Compiling a true FAQ sheet requires a sustained, organized effort: over the
lifetime of the software, incoming questions must be tracked, responses monitored, and all gathered into a coherent, searchable
whole that reflects the collective experience of usersin the wild. It calls for the patient, observant attitude of afield naturalist. No
grand hypothesizing, no visionary pronouncements here—open eyes and accurate note-taking are what's needed most.

What | love about this book is that it grew out of just such a process, and shows it on every page. It is the direct result of the au-
thors' encounters with users. It began with Ben Collins-Sussman's observation that people were asking the same basic questions
over and over on the Subversion mailing lists: what are the standard workflows to use with Subversion? Do branches and tags work
the same way asin other version control systems? How can | find out who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in the summer of 2002 to write The Sub-
version Handbook, a 60-page manual that covered all the basics of using Subversion. The manual made no pretense of being com-
plete, but it was distributed with Subversion and got users over that initial hump in the learning curve. When O'Rellly decided to
publish afull-length Subversion book, the path of least resistance was obvious: just expand the Subversion handbook.

The three coauthors of the new book were thus presented with an unusual opportunity. Officially, their task was to write a book
top-down, starting from a table of contents and an initial draft. But they also had access to a steady stream—indeed, an uncontrol-
lable geyser—of bottom-up source material. Subversion was aready in the hands of thousands of early adopters, and those users
were giving tons of feedback, not only about Subversion, but also about its existing documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mailing lists and chat rooms incessantly,
carefully noting the problems users were having in real-life situations. Monitoring such feedback was part of their job descriptions
at CollabNet anyway, and it gave them a huge advantage when they set out to document Subversion. The book they produced is
grounded firmly in the bedrock of experience, not in the shifting sands of wishful thinking; it combines the best aspects of user
manual and FAQ sheet. This duality might not be noticeable on afirst reading. Taken in order, front to back, the book is smply a
straightforward description of a piece of software. There's the overview, the obligatory guided tour, the chapter on administrative
configuration, some advanced topics, and of course, a command reference and troubleshooting guide. Only when you come back to
it later, seeking the solution to some specific problem, does its authenticity shine out: the telling details that can only result from
encounters with the unexpected, the examples honed from genuine use cases, and most of all the sensitivity to the user's needs and
the user's point of view.

Of course, no one can promise that this book will answer every question you have about Subversion. Sometimes the precision with
which it anticipates your questions will seem eerily telepathic; yet occasionaly, you will stumble into a hole in the community's
knowledge and come away empty-handed. When this happens, the best thing you can do is emall
<user s@ubver si on. apache. or g> and present your problem. The authors are still there and still watching, and the authors
include not just the three listed on the cover, but many others who contributed corrections and original material. From the com-
munity's point of view, solving your problem is merely a pleasant side effect of a much larger project—namely, slowly adjusting
this book, and ultimately Subversion itself, to more closely match the way people actualy use it. They are eager to hear from you,
not only because they can help you, but because you can help them. With Subversion, as with all active free software projects, you

Xii

Foreword

are not alone.

L et this book be your first companion.

Xiii

Preface

“It isimportant not to let the perfect become the enemy of the good, even when you can agree on what perfect is.
Doubly so when you can't. As unpleasant as it isto be trapped by past mistakes, you can't make any progress by
being afraid of your own shadow during design.”

—Greg Hudson, Subversion devel oper

In the world of open source software, the Concurrent Versions System (CVS) was the tool of choice for version control for many
years. And rightly so. CVS was open source software itself, and its nonrestrictive modus operandi and support for networked oper-
ation allowed dozens of geographically dispersed programmers to share their work. It fit the collaborative nature of the open source
world very well. CVS and its semi-chaotic devel opment model have since become cornerstones of open source culture.

But CVSwas not without its flaws, and simply fixing those flaws promised to be an enormous effort. Enter Subversion. Subversion
was designed to be a successor to CV'S, and its originators set out to win the hearts of CV S users in two ways—by creating an open
source system with a design (and “look and feel”) similar to CVS, and by attempting to avoid most of CVS's noticeable flaws.
While the result wasn't—and isn't—the next great evolution in version control design, Subversion is very powerful, very usable,
and very flexible.

This book is written to document the 1.7 series of the Apache Subversi on™? version control system. We have made every attempt
to be thorough in our coverage. However, Subversion has a thriving and energetic development community, so already a number of
features and improvements are planned for future versions that may change some of the commands and specific notes in this book.

What Is Subversion?

Subversion is a free/open source version control system (VCS). That is, Subversion manages files and directories, and the changes
made to them, over time. This allows you to recover older versions of your data or examine the history of how your data changed.
In this regard, many people think of aversion control system as a sort of “time machine.”

Subversion can operate across networks, which allows it to be used by people on different computers. At some level, the ability for
various people to modify and manage the same set of data from their respective locations fosters collaboration. Progress can occur
more quickly without a single conduit through which all modifications must occur. And because the work is versioned, you need
not fear that quality is the trade-off for losing that conduit—if some incorrect change is made to the data, just undo that change.

Some version control systems are aso software configuration management (SCM) systems. These systems are specifically tailored
to manage trees of source code and have many features that are specific to software development—such as natively understanding
programming languages, or supplying tools for building software. Subversion, however, is not one of these systems. It is a genera
system that can be used to manage any collection of files. For you, those files might be source code—for others, anything from
grocery shopping liststo digital video mixdowns and beyond.

Is Subversion the Right Tool?

If you're a user or system administrator pondering the use of Subversion, the first question you should ask yourself is: "Is this the
right tool for the job?" Subversion is a fantastic hammer, but be careful not to view every problem asanail.

If you need to archive old versions of files and directories, possibly resurrect them, or examine logs of how they've changed over
time, then Subversion is exactly the right tool for you. If you need to collaborate with people on documents (usually over a net-
work) and keep track of who made which changes, then Subversion is also appropriate. This is why Subversion is so often used in
software development environments—working on a development team is an inherently social activity, and Subversion makes it
easy to collaborate with other programmers. Of course, there's a cost to using Subversion as well: administrative overhead. Y ou'll
need to manage a data repository to store the information and all its history, and be diligent about backing it up. When working

Iwell refer to it simply as“ Subversion” throughout this book. Y ou'll thank us when you realize just how much space that saves!

Xiv

Preface

with the data on a daily basis, you won't be able to copy, move, rename, or delete files the way you usually do. Instead, you'll have
to do all of those things through Subversion.

Assuming you're fine with the extra workflow, you should still make sure you're not using Subversion to solve a problem that other
tools solve better. For example, because Subversion replicates data to all the collaborators involved, a common misuse isto treat it
as a generic distribution system. People will sometimes use Subversion to distribute huge collections of photos, digital music, or
software packages. The problem is that this sort of data usually isn't changing at all. The collection itself grows over time, but the
individual files within the collection aren't being changed. In this case, using Subversion is “overkill 2 Therearesi mpler tools that
efficiently replicate data without the overhead of tracking changes, such asrsync or unison.

Subversion's History

In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write a replacement for CVS. CollabNet
offereds a collaboration software suite called CollabNet Enterprise Edition (CEE), of which one component was version control.
Although CEE used CVS asiits initia version control system, CVS's limitations were obvious from the beginning, and CollabNet
knew it would eventually have to find something better. Unfortunately, CV'S had become the de facto standard in the open source
world largely because there wasn't anything better, at least not under a free license. So CollabNet determined to write a new ver-
sion control system from scratch, retaining the basic ideas of CV'S, but without the bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with CVS (Coriolis, 1999), and asked if he'd
like to work on this new project. Coincidentally, at the time Karl was already discussing a design for a new version control system
with his friend Jim Blandy. In 1995, the two had started Cyclic Software, a company providing CVS support contracts, and al-
though they later sold the business, they still used CV'S every day at their jobs. Their frustration with CV'S had led Jim to think
carefully about better ways to manage versioned data, and he'd already come up with not only the Subversion name, but also the
basic design of the Subversion data store. When CollabNet called, Karl immediately agreed to work on the project, and Jim got his
employer, Red Hat Software, to essentially donate him to the project for an indefinite period of time. CollabNet hired Karl and Ben
Collins-Sussman, and detailed design work began in May 2000. With the help of some well-placed prods from Brian Behlendorf
and Jason Rabbins of CollabNet, and from Greg Stein (at the time an independent developer active in the WebDAV/DeltaV spe-
cification process), Subversion quickly attracted a community of active developers. It turned out that many people had encountered
the same frustrating experiences with CV S and welcomed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground in version control methodol ogy, they
just wanted to fix CVS. They decided that Subversion would match CV S's features and preserve the same development model, but
not duplicate CVS's most obvious flaws. And athough it did not need to be a drop-in replacement for CVS, it should be similar
enough that any CV S user could make the switch with little effort.

After 14 months of coding, Subversion became “self-hosting” on August 31, 2001. That is, Subversion developers stopped using
CV S to manage Subversion's own source code and started using Subversion instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salaries of a few full-time Subversion de-
velopers), Subversion is run like most open source projects, governed by a loose, transparent set of rules that encourage merito-
cracy. In 2009, CollabNet worked with the Subversion developers towards the goal of integrating the Subversion project into the
Apache Software Foundation (ASF), one of the most well-known collectives of open source projects in the world. Subversion's
technical roots, community priorities, and development practices were a perfect fit for the ASF, many of whose members were
already active Subversion contributors. In early 2010, Subversion was fully adopted into the ASF's family of top-level projects,
moved its project web presence to http://subversion.apache.org, and was rechristened “ Apache Subversion”.

Subversion's Architecture

Figure 1, “ Subversion's architecture” illustrates a “mile-high” view of Subversion's design.

Figure 1. Subversion's ar chitecture

20r asafriend putsit, “swatting afly with aBuick.”
3CollabNet Enterprise Edition has since been replaced by a new product line called CollabNet TeamForge.

XV

http://www.collab.net
http://subversion.apache.org

Preface

commandling
cllant app GUI client apps

__ Citant
‘.«"d’- intertace
Cliant Library
Working Gopy /
Managament

Library #
Aepository Access
Dav VN Local

#
#

4
/ Ye Olde Internet
{Ary TCPAP Matwork)

Apache
miod daw EVNESBE

mod_dav_swn

Reposiony
Intertace

Subwversion Repository

' !

Berkeley DB FSFS

diagram by Brian 'W. Fitzpatnck «fitz & red-bean.comes

On one end is a Subversion repository that holds all of your versioned data. On the other end is your Subversion client program,
which manages local reflections of portions of that versioned data. Between these extremes are multiple routes through a Reposit-
ory Access (RA) layer, some of which go across computer networks and through network servers which then access the repository,

XVi

Preface

others of which bypass the network altogether and access the repository directly.

Subversion's Components

Subversion, once installed, has a number of different pieces. The following is a quick overview of what you get. Don't be alarmed
if the brief descriptions leave you scratching your head—plenty more pagesin this book are devoted to aleviating that confusion.

svn
The command-line client program

svnversion
A program for reporting the state (in terms of revisions of the items present) of aworking copy

svnlook
A tool for directly inspecting a Subversion repository

svnadmin
A tool for creating, tweaking, or repairing a Subversion repository

mod_dav_svn
A plug-in module for the Apache HTTP Server, used to make your repository available to others over a network

svnserve
A custom standalone server program, runnable as a daemon process or invokable by SSH; another way to make your reposit-
ory available to others over a network

svndumpfilter
A program for filtering Subversion repository dump streams

svnsync
A program for incrementally mirroring one repository to another over a network

svnrdump
A program for performing repository history dumps and loads over a network

What's New in Subversion

The first edition of this book was published by O'Reilly Media in 2004, shortly after Subversion had reached 1.0. Since that time,
the Subversion project has continued to release new major releases of the software. Here's a quick summary of major new changes
since Subversion 1.0. Note that this is not a complete list; for full details, please visit Subversion's web site at ht-
tp://subversion.apache.org.

Subversion 1.1 (September 2004)
Release 1.1 introduced FSFS, a flat-file repository storage option for the repository. While the Berkeley DB backend is still
widely used and supported, FSFS has since become the default choice for newly created repositories due to its low barrier to
entry and minimal maintenance requirements. Also in this release came the ability to put symbolic links under version control,
auto-escaping of URLS, and alocalized user interface.

Subversion 1.2 (May 2005)
Release 1.2 introduced the ability to create server-side locks on files, thus serializing commit access to certain resources.
While Subversion is still a fundamentally concurrent version control system, certain types of binary files (e.g. art assets) can-
not be merged together. The locking feature fulfills the need to version and protect such resources. With locking also came a
complete WebDAV auto-versioning implementation, allowing Subversion repositories to be mounted as network folders. Fi-
nally, Subversion 1.2 began using a new, faster binary-differencing algorithm to compress and retrieve old versions of files.

XVii

http://subversion.apache.org
http://subversion.apache.org

Preface

Subversion 1.3 (December 2005)
Release 1.3 brought path-based authorization controls to the svnserve server, matching a feature formerly found only in the
Apache server. The Apache server, however, gained some new logging features of its own, and Subversion's API bindings to
other languages also made great leaps forward.

Subversion 1.4 (September 2006)
Release 1.4 introduced a whole new tool—svnsync—for doing one-way repository replication over a network. Major parts of
the working copy metadata were revamped to no longer use XML (resulting in client-side speed gains), while the Berkeley DB
repository backend gained the ability to automatically recover itself after a server crash.

Subversion 1.5 (June 2008)
Release 1.5 took much longer to finish than prior releases, but the headliner feature was gigantic: semi-automated tracking of
branching and merging. This was a huge boon for users, and pushed Subversion far beyond the abilities of CVS and into the
ranks of commercial competitors such as Perforce and ClearCase. Subversion 1.5 also introduced a bevy of other user-focused
features, such asinteractive resolution of file conflicts, sparse checkouts, client-side management of changelists, powerful new
syntax for externals definitions, and SASL authentication support for the svnserve server.

Subversion 1.6 (March 2009)
Release 1.6 continued to make branching and merging more robust by introducing tree conflicts, and offered improvements to
several other existing features: more interactive conflict resolution options; de-telescoping and outright exclusion support for
sparse checkouts; file-based externals definitions; and operational logging support for svnserve similar to what mod_dav_svn
offered. Also, the command-line client introduced a new shortcut syntax for referring to Subversion repository URLS.

Subversion 1.7 (October 2011)
Release 1.7 was primarily a delivery vehicle for two big plumbing overhauls of existing Subversion components. The largest
and most impactful of these was the so-called “WC-NG”"—a complete rewrite of the libsvn_wc working copy management
library. The second change was the introduction of a sleeker HTTP protocol for Subversion client/server interaction. Subver-
sion 1.7 delivered a handful of additional features, many bug fixes, and some notable performance improvements, too.

Audience

This book iswritten for computer-literate folk who want to use Subversion to manage their data. While Subversion runs on a num-
ber of different operating systems, its primary user interface is command-line-based. That command-line tool (svn), and some ad-
ditional auxiliary programs, are the focus of this book.

For consistency, the examples in this book assume that the reader is using a Unix-like operating system and is relatively comfort-
able with Unix and command-line interfaces. That said, the svn program also runs on non-Unix platforms such as Microsoft Win-
dows. With afew minor exceptions, such as the use of backward slashes (\) instead of forward slashes (/) for path separators, the
input to and output from this tool when run on Windows are identical to that of its Unix counterpart.

Most readers are probably programmers or system administrators who need to track changes to source code. This is the most com-
mon use for Subversion, and therefore it is the scenario underlying al of the book's examples. But Subversion can be used to man-
age changes to any sort of information—images, music, databases, documentation, and so on. To Subversion, all dataisjust data.

While this book is written with the assumption that the reader has never used a version control system, we've aso tried to make it
easy for users of CVS (and other systems) to make a painless leap into Subversion. Specia sidebars may mention other version
control systems from time to time, and Appendix B, Subversion for CVS Users summarizes many of the differences between CVS
and Subversion.

Note also that the source code examples used throughout the book are only examples. While they will compile with the proper

compiler incantations, they are intended to illustrate a particular scenario and not necessarily to serve as examples of good pro-
gramming style or practices.

How to Read This Book

XViii

Preface

Technical books always face a certain dilemma: whether to cater to top-down or to bottom-up learners. A top-down learner prefers
to read or skim documentation, getting a large overview of how the system works; only then does she actually start using the soft-
ware. A bottom-up learner isa“learn by doing” person—someone who just wants to dive into the software and figure it out as she
goes, referring to book sections when necessary. Most books tend to be written for one type of person or the other, and this book is
undoubtedly biased toward top-down learners. (And if you're actually reading this section, you're probably already a top-down
learner yourself!) However, if you're a bottom-up person, don't despair. While the book may be laid out as a broad survey of Sub-
version topics, the content of each section tends to be heavy with specific examples that you can try-by-doing. For the impatient
folks who just want to get going, you can jump right to Appendix A, Subversion Quick-Start Guide.

Regardless of your learning style, this book aims to be useful to people of widely different backgrounds—from those with no pre-
vious experience in version control to experienced system administrators. Depending on your own background, certain chapters
may be more or less important to you. The following can be considered a “recommended reading list” for various types of readers:

Experienced system administrators
The assumption here is that you've probably used version control before and are dying to get a Subversion server up and run-
ning ASAP. Chapter 5, Repository Administration and Chapter 6, Server Configuration will show you how to creste your first
repository and make it available over the network. After that's done, Chapter 2, Basic Usage and Appendix B, Subversion for
CVSUsers are the fastest routes to learning the Subversion client.

New users
Y our administrator has probably set up Subversion aready, and you need to learn how to use the client. If you've never used a
version control system, then Chapter 1, Fundamental Concepts is a vital introduction to the ideas behind version control.
Chapter 2, Basic Usage is a guided tour of the Subversion client.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. Y ou're going to want to learn how to do more
advanced things with Subversion, such as how to use Subversion's property support (Chapter 3, Advanced Topics), how to use
branches and perform merges (Chapter 4, Branching and Merging), how to configure runtime options (Chapter 7, Customizing
Your Subversion Experience), and other things. These chapters aren't critical at first, but be sure to read them once you're com-
fortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or build new software on top of its
many APIs. Chapter 8, Embedding Subversion isjust for you.

The book ends with reference material—Chapter 9, Subversion Complete Reference is a reference guide for al Subversion com-
mands, and the appendixes cover a number of useful topics. These are the chapters you're mostly likely to come back to after
you've finished the book.

Organization of This Book

The chapters that follow and their contents are listed here:

Chapter 1, Fundamental Concepts
Explains the basics of version control and different versioning models, along with Subversion's repository, working copies,
and revisions.

Chapter 2, Basic Usage
Walks you through aday in the life of a Subversion user. It demonstrates how to use a Subversion client to obtain, modify, and
commit data.

Chapter 3, Advanced Topics
Covers more complex features that regular users will eventually come into contact with, such as versioned metadata, file lock-
ing, and peg revisions.

XiX

Preface

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and merging, common use cases, how to undo
changes, and how to easily swing from one branch to the next.

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain a repository, and the tools you can
useto do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and offers different ways to access your repository: HTTP, the svn pro-
tocol, and local disk access. It also covers the details of authentication, authorization and anonymous access.

Chapter 7, Customizing Your Subversion Experience
Explores the Subversion client configuration files, the handling of internationalized text, and how to make external tools co-
operate with Subversion.

Chapter 8, Embedding Subversion
Describes the internals of Subversion, the Subversion filesystem, and the working copy administrative areas from a program-
mer's point of view. It also demonstrates how to use the public APIs to write a program that uses Subversion.

Chapter 9, Subversion Complete Reference
Explainsin great detail every subcommand of svn, svnadmin, and svnlook with plenty of examples for the whole family!

Appendix A, Subversion Quick-Sart Guide
For the impatient, awhirlwind explanation of how to install Subversion and start using it immediately. Y ou have been warned.

Appendix B, Subversion for CVSUsers
Covers the similarities and differences between Subversion and CV'S, with numerous suggestions on how to break all the bad
habits you picked up from years of using CVS. Included are descriptions of Subversion revision numbers, versioned director-
ies, offline operations, update versus status, branches, tags, metadata, conflict resolution, and authentication.

Appendix C, WebDAYV and Autoversioning
Describes the details of WebDAV and DeltaVv and how you can configure your Subversion repository to be mounted read/
writeasa DAV share.

Appendix D, Copyright
A copy of the Creative Commons Attribution License, under which this book is licensed.

This Book Is Free

This book started out as bits of documentation written by Subversion project developers, which were then coalesced into a single
work and rewritten. As such, it has always been under a free license (see Appendix D, Copyright). In fact, the book was written in
the public eye, originally as part of the Subversion project itself. This means two things:

* You will alwaysfind the latest version of this book in the book's own Subversion repository.

* You can make changes to this book and redistribute it however you wish—it's under a free license. Your only obligation is to
maintain proper attribution to the original authors. Of course, we'd much rather you send feedback and patches to the Subversion
developer community, instead of distributing your private version of this book.

The online home of this book's development and most of the volunteer-driven trandation efforts regarding it is ht-
tp://svnbook.red-bean.com. There you can find links to the latest releases and tagged versions of the book in various formats, as
well as instructions for accessing the book's Subversion repository (where its DocBook XML source code lives). Feedback is wel-
comed—encouraged, even. Please submit al comments, complaints, and patches against the book sources to
<svnbook- dev@ ed- bean. conp.

XX

http://svnbook.red-bean.com
http://svnbook.red-bean.com

Preface

Acknowledgments

This book would not be possible (nor very useful) if Subversion did not exist. For that, the authors would like to thank Brian
Behlendorf and CollabNet for the vision to fund such arisky and ambitious new open source project; Jim Blandy for the origina

SubvePi on name and design—we love you, Jim; and Karl Fogel for being such a good friend and a great community leader, in that
order.

Thanks to O'Rellly and the team of professional editors who have helped us polish this text at various stages of its evolution:
Chuck Toporek, Linda Mui, Tatiana Apandi, Mary Brady, and Mary Treseler. Y our patience and support has been tremendous.

Finally, we thank the countless people who contributed to this book with informal reviews, suggestions, and patches. An exhaust-
ive listing of those folks' names would be impractical to print and maintain here, but may their names live on forever in this book's
version control history!

40h, and thanks, Karl, for being too overworked to write this book yourself.

XXi

Chapter 1. Fundamental Concepts

This chapter is ashort, casual introduction to Subversion and its approach to version control. We begin with a discussion of general
version control concepts, work our way into the specific ideas behind Subversion, and show some simple examples of Subversion
inuse.

Even though the examples in this chapter show people sharing collections of program source code, keep in mind that Subversion
can manage any sort of file collection—it's not limited to hel ping computer programmers.

Version Control Basics

A version control system (or revision control system) is a system that tracks incremental versions (or revisions) of files and, in
some cases, directories over time. Of course, merely tracking the various versions of a user's (or group of users) files and director-
iesisn't very interesting in itself. What makes a version control system useful is the fact that it allows you to explore the changes
which resulted in each of those versions and facilitates the arbitrary recall of the same.

In this section, well introduce some fairly high-level version control system components and concepts. Well limit our discussion

to modern version control systems—in today's interconnected world, there is very little point in acknowledging version control sys-
tems which cannot operate across wide-area networks.

The Repository

At the core of the version control system is a repository, which is the central store of that system's data. The repository usually
stores information in the form of a filesystem tree—a hierarchy of files and directories. Any number of clients connect to the repos-
itory, and then read or write to these files. By writing data, a client makes the information available to others; by reading data, the
client receivesinformation from others. Figure 1.1, “A typical client/server system” illustrates this.

Figure 1.1. A typical client/server system
Repository

EDD

Client Client

Why is this interesting? So far, this sounds like the definition of a typical file server. And indeed, the repository is a kind of file
server, but it's not your usual breed. What makes the repository special isthat as the files in the repository are changed, the reposit-
ory remembers each version of those files.

When a client reads data from the repository, it normally sees only the latest version of the filesystem tree. But what makes a ver-
sion control client interesting isthat it also has the ability to request previous states of the filesystem from the repository. A version
control client can ask historical questions such as “What did this directory contain last Wednesday?' and “Who was the last person
to change thisfile, and what changes did he make?’ These are the sorts of questions that are at the heart of any version control sys-

1

Fundamental Concepts

tem.

The Working Copy

A version control system's value comes from the fact that it tracks versions of files and directories, but the rest of the software uni-
verse doesn't operate on “versions of files and directories’. Most software programs understand how to operate only on a single
version of a specific type of file. So how does a version control user interact with an abstract—and, often, remote—repository full
of multiple versions of various files in a concrete fashion? How does his or her word processing software, presentation software,
source code editor, web design software, or some other program—all of which trade in the currency of simple data files—get ac-
cess to such files? The answer is found in the version control construct known as aworking copy.

A working copy is, quite literally, alocal copy of a particular version of a user's VCS-managed data upon which that user isfreeto
work. Working copies™ appear to other software just as any other local directory full of files, so those programs don't have to be
“version-control-aware” in order to read from and write to that data. The task of managing the working copy and communicating
changes made to its contents to and from the repository falls squarely to the version control system's client software.

Versioning Models

If the primary mission of aversion control system isto track the various versions of digital information over time, a very close sec-
ondary mission in any modern version control system is to enable collaborative editing and sharing of that data. But different sys-
tems use different strategies to achieve this. It's important to understand these different strategies, for a couple of reasons. First, it
will help you compare and contrast existing version control systems, in case you encounter other systems similar to Subversion.
Beyond that, it will also help you make more effective use of Subversion, since Subversion itself supports a couple of different
ways of working.

The problem of file sharing

All version control systems have to solve the same fundamental problem: how will the system allow usersto share information, but
prevent them from accidentally stepping on each other's feet? It's all too easy for users to accidentally overwrite each other's
changes in the repository.

Consider the scenario shown in Figure 1.2, “The problem to avoid”. Suppose we have two coworkers, Harry and Sally. They each
decide to edit the same repository file at the same time. If Harry saves his changes to the repository firgt, it's possible that (a few
moments later) Sally could accidentally overwrite them with her own new version of the file. While Harry's version of the file
won't be lost forever (because the system remembers every change), any changes Harry made won't be present in Sally's newer ver-
sion of the file, because she never saw Harry's changes to begin with. Harry's work is still effectively lost—or at least missing from
the latest version of the file—and probably by accident. Thisis definitely a situation we want to avoid!

Figure 1.2. The problem to avoid

Theterm “working copy” can be generally applied to any one file version's local instance. When most folks use the term, though, they are referring to a whole dir-
ectory tree containing files and subdirectories managed by the version control system.

2

Fundamental Concepts

Iwo users read the same file

Repository
A

I_ Red Read —1
2]

Harry Sally

Haery pubiishes his version first
Repository

They both begin fo edit their copies
Repository

b

Harry Sally
Sally accidentally averwrites Harry'S version
Repasitary

Whrite —J‘

£]

Harry Sally Harry

The lock-modify-unlock solution

Many version control systems use a lock-modify-unlock model to address the problem of many authors clobbering each other's
work. In this model, the repository allows only one person to change afile at a time. This exclusivity policy is managed using
locks. Harry must “lock” a file before he can begin making changes to it. If Harry has locked a file, Sally cannot also lock it, and
therefore cannot make any changes to that file. All she can do is read the file and wait for Harry to finish his changes and release
his lock. After Harry unlocks the file, Sally can take her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock
solution” demonstrates this simple solution.

Figure 1.3. Thelock-modify-unlock solution

Fundamental Concepts

Harey “lacks” file 4, then copies While Harry edits, Sally's lack
it for editing attempt faits
Repository Repository

A A

Lock |
I tend Lock
]

Harry Sally Harry Sally
Harry writes his version, then Nowe Sally can lock, read, and
releases his lock edit the lotest version
Repository Repository

. :%l
5

Harry Sally Harry Sally

The problem with the lock-modify-unlock model is that it's a bit restrictive and often becomes a roadblock for users:

Locking may cause administrative problems. Sometimes Harry will lock a file and then forget about it. Meanwhile, because
Saly is till waiting to edit the file, her hands are tied. And then Harry goes on vacation. Now Sally has to get an administrator
to release Harry's lock. The situation ends up causing alot of unnecessary delay and wasted time.

Locking may cause unnecessary serialization. What if Harry is editing the beginning of atext file, and Sally simply wants to edit
the end of the same file? These changes don't overlap at all. They could easily edit the file simultaneously, and no great harm
would come, assuming the changes were properly merged together. There's no need for them to take turns in this situation.

Locking may create a false sense of security. Suppose Harry locks and edits file A, while Sally simultaneously locks and edits
file B. But what if A and B depend on one ancther, and the changes made to each are semantically incompatible? Suddenly A
and B don't work together anymore. The locking system was powerless to prevent the problem—yet it somehow provided afalse
sense of security. It's easy for Harry and Sally to imagine that by locking files, each is beginning a safe, insulated task, and thus
they need not bother discussing their incompatible changes early on. Locking often becomes a substitute for real communication.

The copy-modify-merge solution

Subversion, CVS, and many other version control systems use a copy-modify-merge model as an aternative to locking. In this
model, each user's client contacts the project repository and creates a persona working copy. Users then work simultaneously and

)

Fundamental Concepts

independently, modifying their private copies. Finally, the private copies are merged together into a new, final version. The version
control system often assists with the merging, but ultimately, a human being is responsible for making it happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project, copied from the repository. They work
concurrently and make changes to the same file A within their copies. Sally saves her changes to the repository first. When Harry
attempts to save his changes later, the repository informs him that his file A is out of date. In other words, file A in the repository
has somehow changed since he last copied it. So Harry asks his client to merge any new changes from the repository into his work-
ing copy of file A. Chances are that Sally's changes don't overlap with his own; once he has both sets of changes integrated, he
saves his working copy back to the repository. Figure 1.4, “The copy-modify-merge solution” and Figure 1.5, “The copy-modi-
fy-merge solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Twio users copy the same file They bath begin fa edit their copies

Repository Repository

A A
Read Reod j

)]
Harry Sally Harry Sally
Sally publishes her version first Harry gelrs an “oul-of-dale " error

Repaository Repository

Harry Sally Harry Sally

Figure 1.5. The copy-modify-mer ge solution (continued)

Fundamental Concepts

Harry compares the \atest version A mew merged version is created
T his oum
Repository Repository

™
A
Feod
[~ [™= [
GINE b

Harry Sally Harry Sally
[he merged version is published Now both wsers have each
others” changes
Repository Repository
[,

— Wnte —] wead

Sally Harry Sally

But what if Sally's changes do overlap with Harry's changes? What then? This situation is called a conflict, and it's usually not
much of a problem. When Harry asks his client to merge the latest repository changes into his working copy, his copy of file A is
somehow flagged as being in a state of conflict: he'll be able to see both sets of conflicting changes and manually choose between
them. Note that software can't automatically resolve conflicts; only humans are capable of understanding and making the necessary
intelligent choices. Once Harry has manually resolved the overlapping changes—perhaps after a discussion with Sally—he can
safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely smoothly. Users can work in parallel,
never waiting for one another. When they work on the same files, it turns out that most of their concurrent changes don't overlap at
all; conflicts are infrequent. And the amount of time it takes to resolve conflicts is usually far less than the time lost by a locking
system.

In the end, it al comes down to one critical factor: user communication. When users communicate poorly, both syntactic and se-
mantic conflicts increase. No system can force users to communicate perfectly, and no system can detect semantic conflicts. So
there's no point in being lulled into a false sense of security that alocking system will somehow prevent conflicts; in practice, lock-
ing seemsto inhibit productivity more than anything else.

When Locking Is Necessary
While the lock-madify-unlock model is considered generally harmful to collaboration, sometimes locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually mergeable—that is, that the majority of
the files in the repository are line-based text files (such as program source code). But for files with binary formats, such as

Fundamental Concepts

artwork or sound, it's often impossible to merge conflicting changes. In these situations, it really is necessary for users to take
strict turns when changing the file. Without serialized access, somebody ends up wasting time on changes that are ultimately
discarded.

While Subversion is primarily a copy-modify-merge system, it still recognizes the need to lock an occasional file, and thus
provides mechanisms for this. We discuss this feature in the section called “Locking”.

Version Control the Subversion Way

We've mentioned already that Subversion is a modern, network-aware version control system. As we described in the section
called “Version Control Basics’ (our high-level version control overview), a repository serves as the core storage mechanism for
Subversion's versioned data, and it's via working copies that users and their software programs interact with that data. In this sec-
tion, we'll begin to introduce the specific ways in which Subversion implements version control.

Subversion Repositories

Subversion implements the concept of a version control repository much as any other modern version control system would. Un-
like aworking copy, a Subversion repository is an abstract entity, able to be operated upon almost exclusively by Subversion's own
libraries and tools. As most of a user's Subversion interactions involve the use of the Subversion client and occur in the context of a
working copy, we spend the majority of this book discussing the Subversion working copy and how to manipulate it. For the finer
details of the repository, though, check out Chapter 5, Repository Administration.

Revisions

A Subversion client commits (that is, communicates the changes made to) any number of files and directories as a single atomic
transaction. By atomic transaction, we mean simply this: either all of the changes are accepted into the repository, or none of them
is. Subversion tries to retain this atomicity in the face of program crashes, system crashes, network problems, and other users' ac-
tions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree, called a revision. Each revision is as-
signed a unique natural number, one greater than the number assigned to the previous revision. Theinitial revision of afreshly cre-
ated repository is numbered 0 and consists of nothing but an empty root directory.

Figure 1.6, “Tree changes over time” illustrates a nice way to visualize the repository. Imagine an array of revision numbers, start-

ing at 0, stretching from left to right. Each revision number has a filesystem tree hanging below it, and each tree is a “ snapshot” of
the way the repository looked after a commit.

Figure 1.6. Tree changes over time

Fundamental Concepts

/= L
F | D M
| AL LAl

Global Revision Numbers

Unlike most version control systems, Subversion's revision numbers apply to the entire repository tree, not individual files.
Each revision number selects an entire tree, a particular state of the repository after some committed change. Another way to
think about it is that revision N represents the state of the repository filesystem after the Nth commit. When Subversion users
talk about “revision 5 of f 00. ¢,” they realy mean “f 00. ¢ asit appearsin revision 5.” Notice that in general, revisions N
and M of afile do not necessarily differ! Many other version control systems use per-file revision numbers, so this concept
may seem unusual at first. (Former CV S users might want to see Appendix B, Subversion for CVS Users for more details.)

Addressing the Repository

Subversion client programs use URL s to identify versioned files and directories in Subversion repositories. For the most part, these
URL s use the standard syntax, allowing for server names and port numbersto be specified as part of the URL.

* http://svn.example.com/svn/project
* http://svn.example.com:9834/repos

Subversion repository URLs aren't limited to only the ht t p: / / variety. Because Subversion offers several different ways for its
clients to communicate with its servers, the URLs used to address the repository differ subtly depending on which repository ac-
cess mechanism is employed. Table 1.1, “Repository access URLS’ describes how different URL schemes map to the available re-
pository access methods. For more details about Subversion's server options, see Chapter 6, Server Configuration.

Table1.1. Repository access URL s

Schema Access method
file:/1/ Direct repository access (on local disk)

8

Fundamental Concepts

Schema Access method

http:// Access via WebDAV protocol to Subversion-aware Apache
server

https:// Sameashtt p: //, but with SSL encryption

svn:// Access via custom protocol to an svnser ve server

svn+ssh:// Sameassvn: //, but through an SSH tunnel

Subversion's handling of URLSs has some notable nuances. For example, URLs containing thefi | e: // access method (used for
local repositories) must, in accordance with convention, have either a server name of | ocal host or no server name at all:

« file//Ivar/svn/repos
« file://localhost/var/svn/repos

Also, users of thefi | e: // scheme on Windows platforms will need to use an unofficially “standard” syntax for accessing repos-
itories that are on the same machine, but on a different drive than the client's current working drive. Either of the two following
URL path syntaxes will work, where X is the drive on which the repository resides:

« file/lIX:Ivarlsvn/repos
« file///X|/var/svn/repos

Note that a URL uses forward slashes even though the native (non-URL) form of a path on Windows uses backslashes. Also note
that whenusingthefil e: /// X|/ form at the command line, you need to quote the URL (wrap it in quotation marks) so that the
vertical bar character is not interpreted as a pipe.

you attempt to view afil e: // URL in aregular web browser, it reads and displays the contents of the file at that
location by examining the filesystem directly. However, Subversion's resources exist in a virtua filesystem (see the
section called “Repository Layer”), and your browser will not understand how to interact with that filesystem.

<> You cannot use Subversion'sfi | e: // URLsin aregular web browser the way typical fi |l e: // URLs can. When

The Subversion client will automatically encode URLSs as necessary, just like a web browser does. For example, the URL ht -
tp://host/path with space/ project/ espafia — which contains both spaces and upper-ASCII characters — will be
automatically interpreted by Subversion as if you'd provided ht -
tp: // host/ pat h%20w t h920space/ pr oj ect/ espa¥%3¥Bla. If the URL contains spaces, be sure to place it within
guotation marks at the command line so that your shell treats the whole thing as a single argument to the program.

There is one notable exception to Subversion's handling of URLs which also appliesto its handling of local pathsin many contexts,
too. If the final path component of your URL or local path contains an at sign (@, you need to use a specia syntax—described in
the section called “Peg and Operative Revisions’—in order to make Subversion properly address that resource.

In Subversion 1.6, a new caret (") notation was introduced as a shorthand for “the URL of the repository's root directory”. For ex-
ample, you can usethe/ t ags/ bi gsandwi ch/ to refer to the URL of the/ t ags/ bi gsandwi ch directory in the root of the
repository. Note that this URL syntax works only when your current working directory is a working copy—the command-line cli-
ent knows the repository's root URL by looking at the working copy's metadata. Also note that when you wish to refer precisely to
the root directory of the repository, you must do so using */ (with the trailing slash character), not merely *.

Subversion Working Copies

A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files. You can edit these

Fundamental Concepts

files however you wish, and if they're source code files, you can compile your program from them in the usual way. Y our working
copy is your own private work area: Subversion will never incorporate other people's changes, nor make your own changes avail-
able to others, until you explicitly tell it to do so. Y ou can even have multiple working copies of the same project.

After you've made some changes to the files in your working copy and verified that they work properly, Subversion provides you
with commands to “publish” your changes to the other people working with you on your project (by writing to the repository). If
other people publish their own changes, Subversion provides you with commands to merge those changes into your working copy
(by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help it carry out these commands. In par-
ticular, each working copy contains a subdirectory named . svn, also known as the working copy's administrative directory. The
files in the administrative directory help Subversion recognize which of your versioned files contain unpublished changes, and
which files are out of date with respect to others work.

Prior to version 1.7, Subversion maintained . svn administrative subdirectories in every versioned directory of your

/ working copy. Subversion 1.7 offers a completely new approach to how working copy metadata is stored and main-
tained, and chief among the visible changes to this approach is that each working copy now has only one . svn sub-
directory which is an immediate child of the root of that working copy.

How the working copy works

For each file in aworking directory, Subversion records (among other things) two essential pieces of information:

» What revision your working fileis based on (thisis called the file's working revision)

A timestamp recording when the local copy was last updated by the repository
Given thisinformation, by talking to the repository, Subversion can tell which of the following four states aworking fileisin:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to the repository since its
working revision. An svn commit of the file will do nothing, and an svn update of the file will do nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been committed to the repository since
you last updated. There are local changes that have not been committed to the repository; thus an svn commit of the file will
succeed in publishing your changes, and an svn update of the file will do nothing.

Unchanged, and out of date
The file has not been changed in the working directory, but it has been changed in the repository. The file should eventually be
updated in order to make it current with the latest public revision. An svn commit of the file will do nothing, and an svn up-
date of thefile will fold the latest changes into your working copy.

Locally changed, and out of date
The file has been changed both in the working directory and in the repository. An svn commit of the file will fail with an
“out-of-date” error. The file should be updated first; an svn update command will attempt to merge the public changes with
the local changes. If Subversion can't complete the merge in a plausible way automatically, it leavesit to the user to resolve the
conflict.

Fundamental working copy interactions

A typical Subversion repository often holds the files (or source code) for several projects; usually, each project is a subdirectory in

10

Fundamental Concepts

the repository's filesystem tree. In this arrangement, a user's working copy will usually correspond to a particular subtree of the re-
pository.

For example, suppose you have a repository that contains two software projects, pai nt and cal c. Each project livesin its own
top-level subdirectory, as shown in Figure 1.7, “The repository's filesystem”.

Figure1.7. Therepository'sfilesystem

[
b

- Makefile

¥

p

L 3

integer.c

L L

button.c

Makefile

/Lol

fanvas.C

- brush.c

To get aworking copy, you must check out some subtree of the repository. (The term check out may sound like it has something to
do with locking or reserving resources, but it doesn't; it smply creates a working copy of the project for you.) For example, if you
check out / cal ¢, you will get aworking copy like this:

$ svn checkout http://svn.exanpl e.comrepos/calc
A cal ¢/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 56.

$1s -Acalc

g/akefi le button.c integer.c .svn/

11

Fundamental Concepts

Thelist of letter Asin the left margin indicates that Subversion is adding a number of items to your working copy. Y ou now have a
personal copy of the repository's/ cal ¢ directory, with one additional entry—. svn—uwhich holds the extra information needed
by Subversion, as mentioned earlier.

Suppose you make changesto but t on. c. Sincethe . svn directory remembers the file's original modification date and contents,
Subversion can tell that you've changed the file. However, Subversion does not make your changes public until you explicitly tell it
to. The act of publishing your changes is more commonly known as committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's svn commit command:

$ svn commit button.c -m"Fixed a typo in button.c."
Sendi ng button.c

Transmitting file data .

Committed revision 57.

Now your changes to but t on. ¢ have been committed to the repository, with a note describing your change (namely, that you
fixed atypo). If another user checks out aworking copy of / cal ¢, shewill see your changes in the latest version of thefile.

Suppose you have a collaborator, Sally, who checked out a working copy of / cal ¢ at the same time you did. When you commit
your changeto but t on. c, Sally'sworking copy isleft unchanged; Subversion modifies working copies only at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the svn update command. This will
incorporate your changes into her working copy, as well as any others that have been committed since she checked it out.

$ pwd

/ hone/sal | y/ cal c

$1s -A

Makefile button.c integer.c .svn/
$ svn update

Updating '.":

U button.c

gpdat ed to revision 57.

The output from the svn update command indicates that Subversion updated the contents of but t on. c. Note that Sally didn't
need to specify which files to update; Subversion uses the information in the . svn directory as well as further information in the
repository, to decide which files need to be brought up to date.

Mixed-revision working copies

Asageneral principle, Subversion tries to be as flexible as possible. One special kind of flexibility is the ability to have a working
copy containing files and directories with a mix of different working revision numbers. Subversion working copies do not always
correspond to any single revision in the repository; they may contain files from several different revisions. For example, suppose
you check out aworking copy from a repository whose most recent revision is 4:

calc/
Makefile:4
integer.c:4
button.c:4

12

Fundamental Concepts

At the moment, this working directory corresponds exactly to revision 4 in the repository. However, suppose you make a change to
but t on. ¢, and commit that change. Assuming no other commits have taken place, your commit will create revision 5 of the re-
pository, and your working copy will now look like this:

calc/
Makefile:4
integer.c:4
button.c:5

Suppose that, at this point, Sally commits achangetoi nt eger . c, creating revision 6. If you use svn update to bring your work-
ing copy up to date, it will look likethis:

cac/
Makefile:6
integer.c.6
button.c:6

Sally's change to i nt eger . ¢ will appear in your working copy, and your change will still be present in but t on. c. In this ex-
ample, the text of Makef i | e isidentical in revisions 4, 5, and 6, but Subversion will mark your working copy of Makef i | e with
revision 6 to indicate that it is still current. So, after you do a clean update at the top of your working copy, it will generally corres-
pond to exactly one revision in the repository.

Updates and commits are separate

One of the fundamental rules of Subversion isthat a*“push” action does not cause a“pull” nor vice versa. Just because you're ready
to submit new changes to the repository doesn't mean you're ready to receive changes from other people. And if you have new
changes till in progress, svn update should gracefully merge repository changes into your own, rather than forcing you to publish
them.

The main side effect of thisrule isthat it means aworking copy has to do extra bookkeeping to track mixed revisions as well as be
tolerant of the mixture. It's made more complicated by the fact that directories themselves are versioned.

For example, suppose you have aworking copy entirely at revision 10. Y ou edit thefilef 0o. ht M and then perform an svn com-
mit, which creates revision 15 in the repository. After the commit succeeds, many new users would expect the working copy to be
entirely at revision 15, but that's not the case! Any number of changes might have happened in the repository between revisions 10
and 15. The client knows nothing of those changes in the repository, since you haven't yet run svn update, and svn commit doesn't
pull down new changes. If, on the other hand, svn commit were to automatically download the newest changes, it would be pos-
sible to set the entire working copy to revision 15—but then we'd be breaking the fundamental rule of “push” and “pull” remaining
separate actions. Therefore, the only safe thing the Subversion client can do is mark the one file—f 0o0. ht m —as being at revi-
sion 15. The rest of the working copy remains at revision 10. Only by running svn update can the latest changes be downloaded
and the whole working copy be marked asrevision 15.

Mixed revisions are normal

The fact is, every time you run svn commit your working copy ends up with some mixture of revisions. The things you just com-
mitted are marked as having larger working revisions than everything else. After several commits (with no updates in between),
your working copy will contain a whole mixture of revisions. Even if you're the only person using the repository, you will still see

13

Fundamental Concepts

this phenomenon. To examine your mixture of working revisions, use the svn status command with the - - ver bose (- v) option
(see the section called “ See an overview of your changes’ for more information).

Often, new users are completely unaware that their working copy contains mixed revisions. This can be confusing, because many
client commands are sensitive to the working revision of the item they're examining. For example, the svn log command is used to
display the history of changes to a file or directory (see the section called “Generating a List of Historical Changes’). When the
user invokes this command on a working copy object, he expects to see the entire history of the object. But if the object's working
revision is quite old (often because svn update hasn't been run in a long time), the history of the older version of the object is
shown.

Mixed revisions are useful

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly backdate (or update to a revision older
than the one you already have) portions of your working copy to an earlier revision; you'll learn how to do that in Chapter 2, Basic
Usage. Perhaps you'd like to test an earlier version of a submodule contained in a subdirectory, or perhaps you'd like to figure out

when a bug first came into existence in a specific file. Thisis the “time machine” aspect of a version control system—the feature
that allows you to move any portion of your working copy forward and backward in history.

Mixed revisions have limitations
However you make use of mixed revisionsin your working copy, there are limitations to this flexibility.

First, you cannot commit the deletion of afile or directory that isn't fully up to date. If a newer version of the item existsin the re-
pository, your attempt to delete will be rejected to prevent you from accidentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to adirectory unlessit's fully up to date. You'll learn about attaching “ properties’ to
items in Chapter 3, Advanced Topics. A directory's working revision defines a specific set of entries and properties, and thus com-
mitting a property change to an out-of-date directory may destroy properties you've not yet seen.

Finally, beginning in Subversion 1.7, you cannot by default use a mixed-revision working copy as the target of a merge operation.
(This new requirement was introduced to prevent common problems which stem from doing so.)

Summary

We covered a number of fundamental Subversion conceptsin this chapter:

« Weintroduced the notions of the central repository, the client working copy, and the array of repository revision trees.

* We saw some simple examples of how two collaborators can use Subversion to publish and receive changes from one another,
using the “ copy-modify-merge” model.

» Wetalked ahit about the way Subversion tracks and manages information in aworking copy.

At this point, you should have a good idea of how Subversion works in the most general sense. Armed with this knowledge, you
should now be ready to move into the next chapter, which is a detailed tour of Subversion's commands and features.

14

Chapter 2. Basic Usage

Theory isuseful, but its application isjust plain fun. Let's move now into the details of using Subversion. By the time you reach the
end of this chapter, you will be able to perform al the tasks you need to use Subversion in a normal day's work. You'll start with
getting your files into Subversion, followed by an initial checkout of your code. Well then walk you through making changes and
examining those changes. You'll also see how to bring changes made by others into your working copy, examine them, and work
through any conflicts that might arise.

This chapter will not provide exhaustive coverage of al of Subversion's commands—rather, it's a conversational introduction to the
most common Subversion tasks that you'll encounter. This chapter assumes that you've read and understood Chapter 1, Funda-
mental Concepts and are familiar with the general model of Subversion. For a complete reference of all commands, see Chapter 9,
Subversion Complete Reference.

Also, this chapter assumes that the reader is seeking information about how to interact in a basic fashion with an existing Subver-
sion repository. No repository means no working copy; no working copy means not much of interest in this chapter. There are
many Internet sites which offer free or inexpensive Subversion repository hosting services. Or, if you'd prefer to set up and admin-
ister your own repositories, check out Chapter 5, Repository Administration. But don't expect the examples in this chapter to work
without the user having access to a Subversion repository.

Finally, any Subversion operation that contacts the repository over a network may potentially require that the user authenticate. For
the sake of simplicity, our examples throughout this chapter avoid demonstrating and discussing authentication. Be aware that if
you hope to apply the knowledge herein to an existing, rea-world Subversion instance, you'll probably be forced to provide at |east
a username and password to the server. See the section called “Client Credentials’ for a detailed description of Subversion's hand-
ling of authentication and client credentials.

Help!

It goes without saying that this book exists to be a source of information and assistance for Subversion users new and old. Conveni-
ently, though, the Subversion command-line is self-documenting, aleviating the need to grab a book off the shelf (wooden, virtual,
or otherwise). The svn help command is your gateway to that built-in documentation:

$ svn hel p

Subversion command-line client, version 1.7.0.

Type 'svn hel p <subcommand>' for help on a specific subcomand.

Type 'svn --version' to see the program version and RA nodul es
or 'svn --version --quiet' to see just the version number.

Mbst subcommands take file and/or directory argunents, recursing
on the directories. |If no argunments are supplied to such a
comand, it recurses on the current directory (inclusive) by default.

Avai | abl e subcomuands:
add
bl ame (praise, annotate, ann)
cat

As described in the previous output, you can ask for help on a particular subcommand by running svn hel p SUBCOVIVAND.
Subversion will respond with the full usage message for that subcommand, including its syntax, options, and behavior:

$ svn help help
help (?, h): Describe the usage of this programor its subcomrands.

15

Basic Usage

usage: hel p [SUBCOMVAND. . .]

A obal options:
--user name ARG : specify a usernane ARG
--password ARG : specify a password ARG

Options and Switches and Flags, Oh My!

The Subversion command-line client has numerous command modifiers. Some folks refer to such things as “switches’ or
“flags’—in this book, we'll call them “options’. Y ou'll find the options supported by a given svn subcommand, plus a set of
options which are globally supported by all subcommands, listed near the bottom of the built-in usage message for that sub-
command.

Subversion's options have two distinct forms: short options are a single hyphen followed by a single letter, and long options
consist of two hyphens followed by several letters and hyphens (e.g., -s and - -t hi s-i s-a-1 ong-opti on, respect-
ively). Every option has at least one long format. Some, such as the - - changel i st option, feature an abbreviated long-
format alias (- - cl , in this case). Only certain options—generally the most-used ones—have an additional short format. To
maintain clarity in this book, we usually use the long form in code examples, but when describing options, if there's a short
form, we'll provide the long form (to improve clarity) and the short form (to make it easier to remember). Use the form
you're more comfortable with when executing your own Subversion commands.

Many Unix-based distributions of Subversion include manual pages of the sort that can be invoked using the man program, but
those tend to carry only pointers to other sources of real help, such as the project's website and to the website which hosts this
book. Also, several companies offer Subversion help and support, too, usually via a mixture of web-based discussion forums and
fee-based consulting. And of course, the Internet holds a decade's worth of Subversion-related discussions just begging to be loc-
ated by your favorite search engine. Subversion help is never too far away.

Getting Data into Your Repository

You can get new files into your Subversion repository in two ways. svn import and svn add. We'll discuss svn import now and
will discuss svn add later in this chapter when we review atypical day with Subversion.

Importing Files and Directories

The svn import command is a quick way to copy an unversioned tree of filesinto arepository, creating intermediate directories as
necessary. svn import doesn't require a working copy, and your files are immediately committed to the repository. Y ou typically
use this when you have an existing tree of files that you want to begin tracking in your Subversion repository. For example:

$ svn inport /path/to/mytree \
http://svn. exanpl e. conl svn/ repo/ sone/ proj ect \
-m*"lnitial inmport”

Addi ng nytree/ foo.c
Addi ng nytree/ bar.c
Addi ng nytree/ subdir
Addi ng nmyt r ee/ subdi r/ quux. h

Conmitted revision 1.

16

Basic Usage

The previous example copied the contents of the local directory nyt r ee into the directory sone/ pr oj ect in the repository.
Note that you didn't have to create that new directory first—svn import does that for you. Immediately after the commit, you can
see your datain the repository:

$ svn list http://svn.exanpl e.conl svn/repo/ sone/ proj ect
bar. c

foo.c

subdir/

$

Note that after the import is finished, the original local directory is not converted into a working copy. To begin working on that
datain aversioned fashion, you still need to create a fresh working copy of that tree.

Recommended Repository Layout

Subversion provides the ultimate flexibility in terms of how you arrange your data. Because it simply versions directories and files,
and because it ascribes no particular meaning to any of those objects, you may arrange the data in your repository in any way that
you choose. Unfortunately, this flexibility also means that it's easy to find yourself “lost without aroadmap” as you attempt to nav-
igate different Subversion repositories which may carry completely different and unpredictable arrangements of the data within
them.

To counteract this confusion, we recommend that you follow a repository layout convention (established long ago, in the nascency
of the Subversion project itself) in which a handful of strategically named Subversion repository directories convey valuable mean-
ing about the data they hold. Most projects have a recognizable “main ling”, or trunk, of development; some branches, which are
divergent copies of development lines; and some tags, which are named, stable snapshots of a particular line of development. So
we first recommend that each project have a recognizable project root in the repository, a directory under which al of the ver-
sioned information for that project—and only that project—Ilives. Secondly, we suggest that each project root contain at r unk
subdirectory for the main development line, abr anches subdirectory in which specific branches (or collections of branches) will
be created, and at ags subdirectory in which specific tags (or collections of tags) will be created. Of course, if arepository houses
only asingle project, the root of the repository can serve as the project root, too.

Here are some examples:

$ svn list file:///var/svn/single-project-repo

trunk/

branches/

t ags/

$ svn list file:///var/svn/multi-project-repo
proj ect- A

proj ect - B

$ svn list file:///var/svn/multi-project-repo/project-A
t runk/

branches/

t ags/

$

We talk much more about tags and branches in Chapter 4, Branching and Merging. For details and some advice on how to set up
repositories when you have multiple projects, see the section called “Repository Layout”. Finally, we discuss project roots morein
the section called “Planning Y our Repository Organization”.

What's In a Name?

17

Basic Usage

Subversion tries hard not to limit the type of data you can place under version control. The contents of files and property values are
stored and transmitted as binary data, and the section called “File Content Type” tells you how to give Subversion a hint that
“textual” operations don't make sense for a particular file. There are afew places, however, where Subversion places restrictions on
information it stores.

Subversion internally handles certain bits of data—for example, property names, pathnames, and log messages—as UTF-
8-encoded Unicode. This is not to say that all your interactions with Subversion must involve UTF-8, though. As a general rule,
Subversion clients will gracefully and transparently handle conversions between UTF-8 and the encoding system in use on your
compurter, if such a conversion can meaningfully be done (which is the case for most common encodings in use today).

In WebDAV exchanges and older versions of some of Subversion's administrative files, paths are used as XML attribute values,
and property namesin XML tag names. This means that pathnames can contain only legal XML (1.0) characters, and properties are
further limited to ASCII characters. Subversion also prohibits TAB, CR, and LF characters in path names to prevent paths from be-
ing broken up in diffs or in the output of commands such as svn log or svn status.

While it may seem like a lot to remember, in practice these limitations are rarely a problem. As long as your locale settings are
compatible with UTF-8 and you don't use control characters in path names, you should have no trouble communicating with Sub-
version. The command-line client adds an extra bit of help—to create “legally correct” versions for internal use it will automatic-
ally escapeillegal path characters as needed in URL s that you type.

Creating a Working Copy

Most of the time, you will start using a Subversion repository by performing a checkout of your project. Checking out a directory
from a repository creates a working copy of that directory on your local machine. Unless otherwise specified, this copy contains
the youngest (that is, most recently created or modified) versions of the directory and its children found in the Subversion reposit-
ory:

$ svn checkout http://svn.exanpl e.conm svn/repo/trunk
A t r unk/ READVE

A t runk/ I NSTALL

A trunk/src/ main.c

A trunk/ src/ header. h

Ch
$

ecked out revision 8810.

Although the preceding example checks out the trunk directory, you can just as easily check out a deeper subdirectory of areposit-
ory by specifying that subdirectory's URL as the checkout URL:

$ svn checkout http://svn.exanpl e.com svn/repo/trunk/src
A src/main.c

A src/ header. h

A src/lib/hel pers.c

'C':ﬁecked out revision 8810.
$

Since Subversion uses a copy-modify-merge model instead of lock-modify-unlock (see the section called “Versioning Models’),
you can immediately make changes to the files and directories in your working copy. Y our working copy is just like any other col-
lection of files and directories on your system. You can edit the files inside it, rename it, even delete the entire working copy and
forget about it.

18

Basic Usage

Q While your working copy is “just like any other collection of files and directories on your system,” you can edit files

at will, but you must tell Subversion about everything else that you do. For example, if you want to copy or move an
item in aworking copy, you should use svn copy or svn move instead of the copy and move commands provided by
your operating system. Wel'l talk more about them later in this chapter.

Unless you're ready to commit the addition of a new file or directory or changes to existing ones, there's no need to further notify
the Subversion server that you've done anything.

What Is This .svn Directory?

The topmost directory of aworking copy—and prior to version 1.7, every versioned subdirectory thereof—contains a special
administrative subdirectory named . svn. Usually, your operating system's directory listing commands won't show this sub-
directory, but it is nevertheless an important directory. Whatever you do, don't delete or change anything in the administrat-
ive areal Subversion uses that directory and its contents to manage your working copy.

Notice that in the previous pair of examples, Subversion chose to create a working copy in adirectory named for the final compon-
ent of the checkout URL. This occurs only as a convenience to the user when the checkout URL is the only bit of information
provided to the svn checkout command. Subversion's command-line client gives you additional flexibility, though, allowing you
to optionally specify the local directory name that Subversion should use for the working copy it creates. For example:

®Q: >>r>>%

svn checkout http://svn.exanpl e. com svn/repo/trunk my-worki ng-copy
ny - wor ki ng- copy/ READVE
ny-wor ki ng- copy/ | NSTALL
my-wor ki ng- copy/ src/ mai n. c
my-wor ki ng- copy/ src/ header . h

ecked out revision 8810.

If thelocal directory you specify doesn't yet exist, that's okay—svn checkout will create it for you.

Basic Work Cycle

Subversion has numerous features, options, bells, and whistles, but on a day-to-day basis, odds are that you will use only a few of
them. In this section, we'll run through the most common things that you might find yourself doing with Subversion in the course
of aday'swork.

The typical work cycle looks like this:

. Update your working copy. Thisinvolves the use of the svn update command.

. Make your changes. The most common changes that you'll make are edits to the contents of your existing files. But sometimes

you need to add, remove, copy and move files and directories—the svn add, svn delete, svn copy, and svn move commands
handle those sorts of structural changes within the working copy.

. Review your changes. The svn status and svn diff commands are critical to reviewing the changes you've made in your working

copy.

. Fix your mistakes. Nobody's perfect, so as you review your changes, you may spot something that's not quite right. Sometimes

the easiest way to fix a mistake is start al over again from scratch. The svn revert command restores a file or directory to its

19

Basic Usage

unmodified state.

5. Resolve any conflicts (merge others changes). In the time it takes you to make and review your changes, others might have
made and published changes, too. You'll want to integrate their changes into your working copy to avoid the potential out-
of -dateness scenarios when you attempt to publish your own. Again, the svn update command is the way to do this. If thisres-
ultsin local conflicts, you'll need to resolve those using the svn resolve command.

6. Publish (commit) your changes. The svn commit command transmits your changes to the repository where, if they are accepted,
they create the newest versions of all the things you modified. Now others can see your work, too!

Update Your Working Copy

When working on a project that is being modified via multiple working copies, you'll want to update your working copy to receive
any changes committed from other working copies since your last update. These might be changes that other members of your
project team have made, or they might smply be changes you've made yourself from a different computer. To protect your data,
Subversion won't allow you commit new changes to out-of-date files and directories, so it's best to have the latest versions of all
your project's files and directories before making new changes of your own.

Use svn update to bring your working copy into sync with the latest revision in the repository:

$ svn update

Updating '."':
U foo. c
] bar.c

Updated to revision 2.

In this case, it appears that someone checked in modifications to both f 00. ¢ and bar . ¢ since the last time you updated, and Sub-
version has updated your working copy to include those changes.

When the server sends changes to your working copy via svn update, a letter code is displayed next to each item to let you know
what actions Subversion performed to bring your working copy up to date. To find out what these letters mean, run svn hel p
updat e or see svn update (up) in Chapter 9, Subversion Complete Reference.

Make Your Changes

Now you can get to work and make changes in your working copy. Y ou can make two kinds of changes to your working copy: file
changes and tree changes. Y ou don't need to tell Subversion that you intend to change a file; just make your changes using your
text editor, word processor, graphics program, or whatever tool you would normally use. Subversion automatically detects which
files have been changed, and in addition, it handles binary files just as easily as it handles text files—and just as efficiently, too.
Tree changes are different, and involve changes to a directory's structure. Such changes include adding and removing files, renam-
ing files or directories, and copying files or directories to new locations. For tree changes, you use Subversion operations to
“schedule” files and directories for removal, addition, copying, or moving. These changes may take place immediately in your
working copy, but no additions or removals will happen in the repository until you commit them.

Versioning Symbolic Links

On non-Windows platforms, Subversion is able to version files of the special type symbolic link (or “symlink™). A symlink is
afile that acts as a sort of transparent reference to some other object in the filesystem, allowing programs to read and write to
those objects indirectly by performing operations on the symlink itself.

When a symlink is committed into a Subversion repository, Subversion remembers that the file was in fact a symlink, as well

20

Basic Usage

as the object to which the symlink “points.” When that symlink is checked out to another working copy on a non-Windows
system, Subversion reconstructs a real filesystem-level symbolic link from the versioned symlink. But that doesn't in any
way limit the usability of working copies on systems such as Windows that do not support symlinks. On such systems, Sub-
version simply creates a regular text file whose contents are the path to which the original symlink pointed. While that file
can't be used as a symlink on a Windows system, it also won't prevent Windows users from performing their other Subver-
sion-related activities.

Hereis an overview of the five Subversion subcommands that you'll use most often to make tree changes:

svn add FOO

Use this to schedule the file, directory, or symbolic link FOOto be added to the repository. When you next commit, FOO will
become a child of its parent directory. Note that if FOOis a directory, everything underneath FOOwill be scheduled for addi-
tion. If you want only to add FOOitself, passthe - - dept h=enpt y option.

svn del ete FOO

Use this to schedule the file, directory, or symbolic link FOOto be deleted from the repository. If FOOis afile or link, itisim-
mediately deleted from your working copy. If FOO is a directory, it is not deleted, but Subversion schedules it for deletion.
When you commit your changes, FOOwill be entirely removed from your working copy and the repository.l

svn copy FOO BAR

Create a new item BAR as a duplicate of FOO and automatically schedule BAR for addition. When BAR is added to the reposit-
ory on the next commit, its copy history is recorded (as having originally come from FQO). svn copy does not create interme-
diate directories unless you passthe - - par ent s option.

svn nove FOO BAR

This command is exactly the same asrunning svn copy FOO BAR; svn del ete FOO That is, BAR is scheduled for
addition as a copy of FOO, and FOO s scheduled for removal. svn move does not create intermediate directories unless you
passthe - - par ent s option.

svn nkdir FOO

This command is exactly the same as running mkdi r FOO, svn add FOO. That is, a new directory named FOOis created
and scheduled for addition.

Changing the Repository Without a Working Copy

Subversion does offer ways to immediately commit tree changes to the repository without an explicit commit action. In par-
ticular, specific uses of svn mkdir, svn copy, svh move, and svn delete can operate directly on repository URLs as well as
on working copy paths. Of course, as previously mentioned, svn import always makes direct changes to the repository.

There are pros and cons to performing URL-based operations. One obvious advantage to doing so is speed: sometimes,
checking out a working copy that you don't already have solely to perform some seemingly simple action is an overbearing
cost. A disadvantage is that you are generally limited to a single, or single type of, operation at a time when operating dir-
ectly on URLSs. Finaly, the primary advantage of aworking copy isin its utility as a sort of “staging area’ for changes. You
can make sure that the changes you are about to commit make sense in the larger scope of your project before committing
them. And, of course, these staged changes can be as complex or as a simple as they need to be, yet result in but asingle new
revision when committed.

ot course, nothi ng is ever totally deleted from the repository—just from its HEAD revision. You may continue to access the deleted item in previous revisions.
Should you desire to resurrect the item so that it is again present in HEAD, see the section called “ Resurrecting Deleted Items’.

21

Basic Usage

Review Your Changes

Once you've finished making changes, you need to commit them to the repository, but before you do so, it's usually a good idea to
take alook at exactly what you've changed. By examining your changes before you commit, you can compose a more accurate log
message (a human-readable description of the committed changes stored alongside those changes in the repository). Y ou may also
discover that you've inadvertently changed afile, and that you need to undo that change before committing. Additionaly, thisis a
good opportunity to review and scrutinize changes before publishing them. You can see an overview of the changes you've made
by using the svn status command, and you can dig into the details of those changes by using the svn diff command.

Look Ma! No Network!

Y ou can use the commands svn status, svn diff, and svn revert without any network access even if your repository is across
the network. This makes it easy to manage and review your changes-in-progress when you are working offline or are other-
wise unable to contact your repository over the network.

Subversion does this by keeping private caches of pristine, unmodified versions of each versioned file inside its working
copy administrative area (or prior to version 1.7, potentially multiple administrative areas). This allows Subversion to re-
port—and revert—loca modifications to those files without network access. This cache (called the text-base) also allows
Subversion to send the user's local modifications during a commit to the server as a compressed delta (or “difference”)
against the pristine version. Having this cache is a tremendous benefit—even if you have a fast Internet connection, it's gen-
erally much faster to send only afil€e's changes rather than the whole file to the server.

See an overview of your changes

To get an overview of your changes, use the svn status command. You'll probably use svn status more than any other Subversion
command.

Because the cvs status command's output was so noisy, and because cvs update not only performs an update, but
also reports the status of your local changes, most CV'S users have grown accustomed to using cvs update to report
their changes. In Subversion, the update and status reporting facilities are completely separate. See the section called
“Distinction Between Status and Update” for more details.

If yourun svn st at us at the top of your working copy with no additional arguments, it will detect and report all file and tree
changes you've made.

$ svn status

? scratch. c

A stuff/I oot

A stuff/l oot/ new. c
D stuff/old.c

M bar.c

$

In its default output mode, svn status prints seven columns of characters, followed by several whitespace characters, followed by a
file or directory name. The first column tells the status of afile or directory and/or its contents. Some of the most common codes
that svn status displays are:

? item
Thefile, directory, or symbolic link i t emis not under version control.

22

Basic Usage

Aitem
Thefile, directory, or symbolic link i t emhas been scheduled for addition into the repository.

Citem
Thefilei t emisin a state of conflict. That is, changes received from the server during an update overlap with local changes
that you have in your working copy (and weren't resolved during the update). Y ou must resolve this conflict before committing
your changes to the repository.

Ditem
Thefile, directory, or symbolic link i t emhas been scheduled for deletion from the repository.

Mitem
The contents of thefilei t emhave been modified.

If you pass a specific path to svn status, you get information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also hasa - - ver bose (- v) option, which will show you the status of every item in your working copy, even if it has
not been changed:

$ svn status -v

M 44 23 sally README
44 30 sally | NSTALL
M 44 20 harry bar. c
44 18 ira stuff
44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
44 21 sally stuff/things
A 0 ? ? stuff/things/bloo.h
44 36 harry stuff/things/gloo.c

Thisisthe “long form” output of svn status. The lettersin the first column mean the same as before, but the second column shows
the working revision of the item. The third and fourth columns show the revision in which the item last changed, and who changed
it.

None of the prior invocations to svn status contact the repository—they merely report what is known about the working copy
items based on the records stored in the working copy administrative area and on the timestamps and contents of modified files.
But sometimes it is useful to see which of the items in your working copy have been modified in the repository since the last time
you updated your working copy. For this, svn status offersthe - - show updat es (- u) option, which contacts the repository and
adds information about items that are out of date:

$ svn status -u -v
M * 44 23 sal ly READVE
M 44 20 harry bar. c
* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuf f/things/bloo.h
St at us agai nst revi sion: 46

23

Basic Usage

Notice in the previous example the two asterisks: if you were to run svn updat e at this point, you would receive changes to
README and t r out . c. Thistells you some very useful information—because one of those itemsis also one that you have locally
modified (the file READVE), you'll need to update and get the servers changes for that file before you commit, or the repository
will reject your commit for being out of date. We discuss thisin more detail later.

svn status can display much more information about the files and directories in your working copy than we've shown here—for an
exhaustive description of svn status and its output, run svn hel p st at us or see svn status (stat, st) in Chapter 9, Subversion
Complete Reference.

Examine the details of your local modifications

Another way to examine your changes is with the svn diff command, which displays differences in file content. When you run
svn diff atthetop of your working copy with no arguments, Subversion will print the changes you've made to human-readable
files in your working copy. It displays those changes in unified diff format, a format which describes changes as “hunks’ (or
“snippets’) of afile's content where each line of text is prefixed with a single-character code: a space, which means the line was
unchanged; aminus sign (-), which means the line was removed from the file; or a plus sign (+), which means the line was added
to the file. In the context of svn diff, those minus-sign- and plus-sign-prefixed lines show how the lines looked before and after
your modifications, respectively.

Here's an example:

$ svn diff
| ndex: bar.c

--- bar.c (revision 3)
+++ bar.c (working copy)
@a@-1,7 +1,12 @@

+#i ncl ude <sys/types. h>
+#i ncl ude <sys/stat. h>
+#i ncl ude <uni std. h>

+

+#i ncl ude <stdio. h>

int main(void) {

- printf("Sixty-four slices of Anmerican Cheese...\n");
+ printf("Sixty-five slices of Anerican Cheese...\n");
return O;

}
| ndex: README

--- README (revision 3)

+++ README (wor ki ng copy)

@ -193,3 +193,4 @@

+Note to self: pick up laundry.

I ndex: stuff/fish.c

--- stuff/fish.c (revision 1)

+++ stuff/fish.c (working copy)
-Welcone to the file known as 'fish'.
-Information on fish will be here soon.

I ndex: stuff/things/bloo.h

Basic Usage

--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe

+t hi ngs about bl oo.

The svn diff command produces this output by comparing your working files against its pristine text-base. Files scheduled for ad-
dition are displayed as files in which every line was added; files scheduled for deletion are displayed as if every line was removed
from those files. The output from svn diff is somehwat compatible with the patch program—more so with the svn patch subcom-
mand introduced in Subversion 1.7. Patch processing commands such as these read and apply patch files (or “patches’), which are
files that describe differences made to one or more files. Because of this, you can share the changes you've made in your working
copy with someone else without first committing those changes by creating a patch file from the redirected output of svn diff:

$ svn diff > patchfile
$

Subversion uses its internal diff engine, which produces unified diff format, by default. If you want diff output in a different
format, specify an external diff program using - - di f f - cnd and pass any additional flags that it needs via the - - ext ensi ons
(- X) option. For example, you might want Subversion to defer its difference calculation and display to the GNU diff program, ask-
ing that program to print local modifications made to the file f 00. ¢ in context diff format (another flavor of difference format)
while ignoring changes made only to the case of the letters used in the file's contents:

$ svn diff --diff-cnd /usr/bin/diff -x "-i" foo.c

Fix Your Mistakes

Suppose while viewing the output of svn diff you determine that all the changes you made to a particular file are mistakes. Maybe
you shouldn't have changed the file at all, or perhaps it would be easier to make different changes starting from scratch. Y ou could
edit the file again and unmake all those changes. You could try to find a copy of how the file looked before you changed it, and
then copy its contents atop your modified version. You could attempt to apply those changes to the file again in reverse using
pat ch - R And there are probably other approaches you could take.

Fortunately in Subversion, undoing your work and starting over from scratch doesn't require such acrobatics. Just use the svn re-
vert command:

$ svn status READVE
M READVE

$ svn revert README
Revert ed ' READVE

% svn status READVE

In this example, Subversion has reverted the file to its premodified state by overwriting it with the pristine version of the file
cached in the text-base area. But note that svn revert can undo any scheduled operation—for example, you might decide that you

25

Basic Usage

don't want to add a new file after all:

$ svn status newfile.txt

? newfile.txt
$ svn add newfile.txt
A newfile.txt

$ svn revert newfile.txt
Reverted 'newfile.txt'
$ svn status newfile.txt
? newfile.txt

$

Or perhaps you mistakenly removed afile from version control:

$ svn status READVE
$ svn del ete READVMVE
D READVE
$ svn revert README
Reverted ' READVE
% svn st atus READVE

The svn revert command offers salvation for imperfect people. It can save you huge amounts of time and energy that would other-
wise be spent manually unmaking changes or, worse, disposing of your working copy and checking out a fresh one just to have a
clean slate to work with again.

Resolve Any Conflicts

We've already seen how svn st at us - u can predict conflicts, but dealing with those conflictsis still something that remains to
be done. Conflicts can occur any time you attempt to merge or integrate (in a very general sense) changes from the repository into
your working copy. By now you know that svn update creates exactly that sort of scenario—that command's very purpose is to
bring your working copy up to date with the repository by merging all the changes made since your last update into your working
copy. So how does Subversion report these conflicts to you, and how do you deal with them?

Supposeyou run svn updat e and you see this sort of interesting output:

$ svn update

Updating '.":
U I NSTALL
G README

Conflict discovered in "bar.c'.

Sel ect: (p) postpone, (df) diff-full, (e) edit,
(nmc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

The U (which stands for “Updated”) and G (for “merGed”) codes are no cause for concern; those files cleanly absorbed changes
from the repository. A file marked with U contains no local changes but was updated with changes from the repository. One
marked with G had local changes to begin with, but the changes coming from the repository didn't overlap with those local
changes.

26

Basic Usage

It's the next few lines which are interesting. First, Subversion reports to you that in its attempt to merge outstanding server changes
into the file bar . c, it has detected that some of those changes clash with local modifications you've made to that file in your
working copy but have not yet committed. Perhaps someone has changed the same line of text you also changed. Whatever the
reason, Subversion instantly flags this file as being in a state of conflict. It then asks you what you want to do about the problem,
allowing you to interactively choose an action to take toward resolving the conflict. The most commonly used options are dis-
played, but you can see all of the options by typing s:

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: s

(e) edit - change nerged file in an editor

(df) diff-full - show all changes made to nerged file

(r) resolved - accept nerged version of file

(dc) display-conflict - show all conflicts (ignoring merged version)
(rmc) mine-conflict - accept ny version for all conflicts (sane)
(tc) theirs-conflict - accept their version for all conflicts (sane)
(rmf) mne-full - accept ny version of entire file (even non-conflicts)
(tf) theirs-full - accept their version of entire file (sane)
(p) postpone - mark the conflict to be resolved |ater

(1) Tlaunch - launch external tool to resolve conflict

(s) show all - show this |ist

Select: (p) postpone, (df) diff-full, (e) edit,
(nmc) nmine-conflict, (tc) theirs-conflict,
(s) show all options:

Let's briefly review each of these options before we go into detail on what each option means.

(e) edit
Open thefile in conflict with your favorite editor, as set in the environment variable EDI TOR.

(df) diff-full
Display the differences between the base revision and the conflicted file itself in unified diff format.

(r) resolved
After editing a file, tell svn that you've resolved the conflicts in the file and that it should accept the current con-
tents—basically that you've “resolved” the conflict.

(dc) display-conflict
Display all conflicting regions of the file, ignoring changes which were successfully merged.

(nt) mne-conflict
Discard any newly received changes from the server which conflict with your local changes to the file under review. However,
accept and merge all non-conflicting changes received from the server for that file.

(tc) theirs-conflict
Discard any local changes which conflict with incoming changes from the server for the file under review. However, preserve
al non-conflicting local changesto that file.

(nf) mne-full
Discard al newly received changes from the server for the file under review, but preserve al your local changesfor that file.

27

Basic Usage

(tf) theirs-full
Discard al your local changes to the file under review and use only the newly received changes from the server for that file.

(p) postpone
Leave thefilein aconflicted state for you to resolve after your update is complete.

(1) launch
Launch an external program to perform the conflict resolution. This requires a bit of preparation beforehand.

(s) show all
Show the list of all possible commands you can use in interactive conflict resolution.

Well cover these commands in more detail now, grouping them together by related functionality.

Viewing conflict differences interactively

Before deciding how to attack a conflict interactively, odds are that you'd like to see exactly what is in conflict. Two of the com-
mands available at the interactive conflict resolution prompt can assist you here. The first is the “diff-full” command (df), which
displays al the local modifications to the file in question plus any conflict regions:

Select: (p) postpone, (df) diff-full, (e) edit,
(nc) mne-conflict, (tc) theirs-conflict,
(s) show all options: df

--- .svn/text-base/sandw ch. txt.svn-base Tue Dec 11 21:33:57 2007
+++ .svn/tnp/tenpfile. 32. tnp Tue Dec 11 21:34:33 2007
@-1 +1,5 @

-Just buy a sandwi ch.
+<<<<<<< . m ne

+Go pi ck up a cheesest eak.

+Bring ne a taco!
+>>>>>>> [r 32

The first line of the diff content shows the previous contents of the working copy (the BASE revision), the next content line is your
change, and the last content line is the change that was just received from the server (usually the HEAD revision).

The second command is similar to the first, but the “display-conflict” (dc) command shows only the conflict regions, not all the
changes made to the file. Additionally, this command uses a dightly different display format for the conflict regions which allows
you to more easily compare the file's contents in those regions as they would appear in each of three states: original and unedited;
with your local changes applied and the server's conflicting changes ignored; and with only the server's incoming changes applied
and your local, conflicting changes reverted.

After reviewing the information provided by these commands, you're ready to move on to the next action.

Resolving conflict differences interactively

There are several different ways to resolve conflicts interactively—two of which allow you to selectively merge and edit changes,
the rest of which allow you to simply pick aversion of the file and move along.

If you wish to choose some combination of your local changes, you can use the “edit” command (e) to manually edit the file with
conflict markersin atext editor (configured per the instructions in the section called “Using External Editors’). After you've edited
thefile, if you're satisfied with the changes you've made, you can tell Subversion that the edited file is no longer in conflict by us-
ing the “resolved” command (r).

28

Basic Usage

Regardless of what your local Unix snob will likely tell you, editing the file by hand in your favorite text editor is a somewhat [ow-
tech way of remedying conflicts (see the section called “Merging conflicts by hand” for a walkthrough). For this reason, Subver-
sion provides the “launch” resolution command (1) to fire up afancy graphical merge tool instead (see the section called “External
merge’).

If you decide that you don't need to merge any changes, but just want to accept one version of the file or the other, you can either
choose your changes (ak.a. “min€”) by using the “mine-full” command (nf) or choose theirs by using the “theirs-full” command

tf).

Finally, there is aso a pair of compromise options available. The “mine-conflict” (nt) and “theirs-conflict” (t ¢) commands in-
struct Subversion to select your local changes or the server'sincoming changes, respectively, asthe “winner” for al conflictsin the
file. But, unlike the “mine-full” and “theirs-full” commands, these commands preserve both your local changes and changes re-
ceived from the server in regions of the file where no conflict was detected.

Postponing conflict resolution

This may sound like an appropriate section for avoiding marital disagreements, but it's actually still about Subversion, so read on.
If you're doing an update and encounter a conflict that you're not prepared to review or resolve, you can type p to postpone resolv-
ing a conflict on afile-by-file basis when you run svn updat e. If you know in advance that you don't want to resolve any con-
flicts interactively, you can passthe - - non- i nt er act i ve option to svn update, and any file in conflict will be marked with a
Cautomatically.

The C (for “Conflicted”) means that the changes from the server overlapped with your own, and now you have to manually choose
between them after the update has completed. When you postpone a conflict resolution, svn typically does three things to assist
you in noticing and resolving that conflict:

» Subversion prints a C during the update and remembers that the file isin a state of conflict.

« |If Subversion considers the file to be mergeable, it places conflict markers—special strings of text that delimit the “sides’ of the
conflict—into the file to visibly demonstrate the overlapping areas. (Subversion uses the svn: m ne-t ype property to decide
whether afileis capable of contextual, line-based merging. See the section called “File Content Type” to learn more.)

 For every conflicted file, Subversion places three extra unversioned filesin your working copy:

filename. nmne
Thisisyour file asit existed in your working copy before you began the update process. This version of the file contains your
local madifications as well as conflict markers. (If Subversion considers the file to be unmergeable, the . mi ne file isn't cre-
ated, since it would be identical to the working file.)

fil ename. r OLDREV
Thisisthefile asit existed in the BASE revision—that is, the unmodified revision of the file in your working copy before you
began the update process—where OLDREV is that base revision humber.

fil ename. r NEWREV
Thisis the file that your Subversion client just received from the server via the update of your working copy, where NEWREV
corresponds to the revision number to which you were updating (HEAD, unless otherwise requested).

For example, Sally makes changes to the file sandwi ch. t xt , but does not yet commit those changes. Meanwhile, Harry com-
mits changes to that same file. Sally updates her working copy before committing and she gets a conflict, which she postpones:

$ svn update

Updating '.":

Conflict discovered in 'sandw ch.txt'.

Sel ect: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,

29

Basic Usage

(s) show all options: p

C sandw ch. t xt
Updated to revision 2.
Summary of conflicts:

Text conflicts: 1
$1s -1
sandwi ch. t xt
sandwi ch. t xt. m ne
sandwi ch.txt.r1l
sandwi ch. txt.r2

At this point, Subversion will not allow Sally to commit the file sandwi ch. t xt until the three temporary files are removed:

$ svn commit -m"Add a few nore things"
svn: E155015: Commit failed (details follow):
svn: E155015: Aborting conmit: '/hone/sally/svn-work/sandw ch.txt' remains in conflict

If you've postponed a conflict, you need to resolve the conflict before Subversion will allow you to commit your changes. Y ou'll do
this with the svn resolve command and one of several argumentsto the - - accept option.

If you want to choose the version of the file that you last checked out before making your edits, choose the base argument.
If you want to choose the version that contains only your edits, choose the i ne- f ul | argument.

If you want to choose the version that your most recent update pulled from the server (and thus discarding your edits entirely),
choosethet hei rs-ful | argument.

However, if you want to pick and choose from your changes and the changes that your update fetched from the server, merge the
conflicted text “by hand” (by examining and editing the conflict markers within the file) and then choose the wor ki ng argument.

svn resolve removes the three temporary files and accepts the version of the file that you specified with the - - accept option,
and Subversion no longer considers the file to be in a state of conflict:

$ svn resol ve --accept working sandwi ch. t xt
Resol ved conflicted state of 'sandw ch.txt'

Merging conflicts by hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little practice, it can become as easy as
falling off abike.

Here's an example. Due to a miscommunication, you and Sally, your collaborator, both edit the file sandwi ch. t xt at the same
time. Sally commits her changes, and when you go to update your working copy, you get a conflict and you're going to have to edit
sandwi ch. t xt toresolvethe conflict. First, let'stake alook at thefile:

$ cat sandwi ch. t xt
Top piece of bread
Mayonnai se

30

Basic Usage

Lettuce

Tonmat o

Pr ovol one
<LK ., M he
Sal am

Mort adel | a
Prosciutto

Sauer kr aut

Gilled Chicken
SS>SS>S>S> 2

Creol e Mustard

Bott om pi ece of bread

The strings of less-than signs, equals signs, and greater-than signs are conflict markers and are not part of the actual datain con-
flict. You generally want to ensure that those are removed from the file before your next commit. The text between the first two
sets of markers is composed of the changes you made in the conflicting area:

<<<<<<< . m ne
Sal am

Mort adel | a
Prosciutto

Sauer kr aut
Gilled Chicken
>S>S>S>S>>S> 12

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to be awfully surprised when the sand-
wich arrives and it's not what she wanted. This is where you pick up the phone or walk across the office and explain to Sally that
you can't get sauerkraut from an Italian deli.? Once you've agreed on the changes you will commit, edit your file and remove the
conflict markers:

Top piece of bread
Mayonnai se

Lettuce

Tonmat o

Pr ovol one

Sal am

Mort adel | a

Prosciutto

Creol e Mustard

Bott om pi ece of bread

2And if you ask them for it, they may very well ride you out of town on arail.

31

Basic Usage

Now use svn resolve, and you're ready to commit your changes:

$ svn resol ve --accept working sandwi ch. t xt
Resol ved conflicted state of 'sandw ch.txt'
$ svn commit -m " Go ahead and use ny sandwi ch, discarding Sally's edits."

Note that svn resolve, unlike most of the other commands we deal with in this chapter, requires that you explicitly list any file-
names that you wish to resolve. In any case, you want to be careful and use svn resolve only when you're certain that you've fixed
the conflict in your file—once the temporary files are removed, Subversion will let you commit the file even if it still contains con-
flict markers.

If you ever get confused while editing the conflicted file, you can always consult the three files that Subversion creates for you in
your working copy—including your file as it was before you updated. You can even use a third-party interactive merging tool to
examine those three files.

Discarding your changes in favor of a newly fetched revision

If you get a conflict and decide that you want to throw out your changes, you can run svn resol ve --accept theirs-
full CONFLI CTED- PATHand Subversion will discard your edits and remove the temporary files:

$ svn update

Updating '."':

Conflict discovered in 'sandw ch.txt'.

Select: (p) postpone, (df) diff-full, (e) edit,
(nmc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

C sandw ch. t xt

Updated to revision 2.

Summary of conflicts:

Text conflicts: 1

$ |I's sandwi ch.*

sandwi ch.txt sandwi ch.txt.mne sandwi ch.txt.r2 sandwich.txt.rl

$ svn resolve --accept theirs-full sandw ch.txt

Resol ved conflicted state of 'sandw ch.txt'

$

Punting: using svn revert

If you decide that you want to throw out your changes and start your edits again (whether this occurs after a conflict or anytime),
just revert your changes:

$ svn revert sandw ch. t xt
Reverted ' sandw ch. t xt'

$ |I's sandwi ch. *

sandw ch. t xt

Note that when you revert a conflicted file, you don't have to use svn resolve.

32

Basic Usage

Commit Your Changes

Finally! Your edits are finished, you've merged all changes from the server, and you're ready to commit your changes to the repos-
itory.

The svn commit command sends all of your changes to the repository. When you commit a change, you need to supply alog mes-
sage describing your change. Y our log message will be attached to the new revision you create. If your log message is brief, you
may wish to supply it on the command line using the - - nessage (-) option:

$ svn commit -m "Corrected nunber of cheese slices."
Sendi ng sandwi ch. t xt

Transmtting file data .

Conmitted revision 3.

However, if you've been composing your log message in some other text file as you work, you may want to tell Subversion to get
the message from that file by passing its filename asthe value of the- - f i | e (- F) option:

$ svn commit -F | ognsg
Sendi ng sandwi ch. t xt
Transmitting file data .
Committed revision 4.

If you fail to specify either the- - message (-nj or--fil e (- F) option, Subversion will automatically launch your favorite ed-
itor (seetheinformation on edi t or - cd in the section called “Config”) for composing alog message.

If you're in your editor writing a commit message and decide that you want to cancel your commit, you can just quit
_} your editor without saving changes. If you've already saved your commit message, simply delete all the text, save
again, and then abort:

$ svn conmit
Waiting for Emacs...Done

Log nessage unchanged or not specified
(a)bort, (c)ontinue, (e)dit
a

$

The repository doesn't know or care whether your changes make any sense as awhole; it checks only to make sure nobody else has
changed any of the same files that you did when you weren't looking. If somebody has done that, the entire commit will fail with a
message informing you that one or more of your files are out of date:

$ svn commit -m "Add another rule"

Sendi ng rul es.txt

svn: E155011: Commit failed (details follow):

svn: E155011: File '/home/sally/svn-work/sandwi ch.txt' is out of date

33

Basic Usage

(The exact wording of this error message depends on the network protocol and server you're using, but the idea is the same in all
cases.)

At this point, you need to run svn updat e, deal with any merges or conflicts that result, and attempt your commit again.
That covers the basic work cycle for using Subversion. Subversion offers many other features that you can use to manage your re-

pository and working copy, but most of your day-to-day use of Subversion will involve only the commands that we've discussed so
far in this chapter. We will, however, cover afew more commands that you'll use fairly often.

Examining History

Y our Subversion repository islike atime machine. It keeps arecord of every change ever committed and allows you to explore this
history by examining previous versions of files and directories as well as the metadata that accompanies them. With a single Sub-
version command, you can check out the repository (or restore an existing working copy) exactly as it was at any date or revision
number in the past. However, sometimes you just want to peer into the past instead of going into it.
Several commands can provide you with historical data from the repository:
svn diff
Shows line-level details of a particular change
svn log
Shows you broad information: 1og messages with date and author information attached to revisions and which paths changed
in each revision

svn cat
Retrieves afile asit existed in aparticular revision number and displaysit on your screen

svn list
Displaysthefilesin adirectory for any given revision

Examining the Details of Historical Changes

Weve aready seen svn diff before—it displays file differences in unified diff format; we used it to show the local modifications
made to our working copy before committing to the repository.

In fact, it turns out that there are three distinct uses of svn diff:

» Examining local changes
» Comparing your working copy to the repository

» Comparing repository revisions

Examining local changes

Aswe've seen, invoking svn di f f with no options will compare your working files to the cached “ pristine” copiesinthe. svn
area

Basic Usage

$ svn diff
| ndex: rul es. txt

--- rules.txt (revision 3)
+++ rul es.txt (working copy)
@-1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in noderation
-Chew with your nouth open
+Chew wi th your mouth cl osed
+Li sten when ot hers are speaking

Comparing working copy to repository

If asingle- - r evi si on (- r) number is passed, your working copy is compared to the specified revision in the repository:

$ svn diff -r 3 rules.txt
| ndex: rul es.txt

--- rules.txt (revision 3)
+++ rul es. txt (working copy)
@a@-1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything i n noderation
-Chew with your nouth open
+Chew wi th your mouth cl osed
+Li sten when ot hers are speaking

Comparing repository revisions

If two revision numbers, separated by acolon, are passed via- - r evi si on (- r), the two revisions are directly compared:

$ svn diff -r 2:3 rules.txt
| ndex: rul es.txt

--- rules.txt (revision 2)
+++ rul es.txt (revision 3)
@@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everything in noderation
Chew wi t h your nouth open

A more convenient way of comparing one revision to the previous revision isto usethe - - change (- ¢) option:

35

Basic Usage

$ svn diff -c 3 rules.txt
| ndex: rul es. txt

--- rules.txt (revision 2)
+++ rul es.txt (revision 3)
@@-1,4 +1,4 @@
Be kind to others
- Freedom = Chocol ate | ce Cream
+Freedom = Responsibility
Everything in noderation
$Chevvwith your mouth open

Lastly, you can compare repository revisions even when you don't have a working copy on your local machine, just by including
the appropriate URL on the command line:

$ svn diff -c 5 http://svn.exanpl e. conl repos/exanpl e/trunk/text/rul es.txt

$

Generating a List of Historical Changes

To find information about the history of afile or directory, use the svn log command. svn log will provide you with a record of
who made changes to a file or directory, a what revision it changed, the time and date of that revision, and—if it was
provided—the log message that accompanied the commit;

$ svn |l og

r3 | sally | 2008-05-15 23:09:28 -0500 (Thu, 15 May 2008) | 1 line

Added include |lines and corrected # of cheese slices.

r2 | harry | 2008-05-14 18:43:15 -0500 (Wed, 14 May 2008) | 1 line
Added nai n() nethods.

rl | sally | 2008-05-10 19:50:31 -0500 (Sat, 10 May 2008) | 1 line

Initial inport

Note that the log messages are printed in reverse chronological order by default. If you wish to see a different range of revisionsin
aparticular order or just asingle revision, passthe- - r evi si on (- r) option:

Table2.1. Common log requests

Command Description
svn log -r 5:19 Display logs for revisions 5 through 19 in chronological order

36

Basic Usage

Command Description

svn log -r 19:5 Display logs for revisions 5 through 19 in reverse chronological
order

svnh log -r 8 Display logsfor revision 8 only

Y ou can also examine the log history of asinglefile or directory. For example:

$ svn log foo.c

$ svn log http://foo.com svn/trunk/code/foo.c

These will display log messages only for those revisions in which the working file (or URL) changed.

Why Does svn log Not Show Me What | Just Committed?

If you make a commit and immediately type svn | og with no arguments, you may notice that your most recent commit
doesn't show up in thelist of log messages. Thisis due to a combination of the behavior of svn commit and the default beha-
vior of svn log. First, when you commit changes to the repository, svn bumps only the revision of files (and directories) that
it commits, so usually the parent directory remains at the older revision (See the section called “Updates and commits are
separate” for an explanation of why). svn log then defaults to fetching the history of the directory at its current revision, and
thus you don't see the newly committed changes. The solution here is to either update your working copy or explicitly
provide arevision number to svn log by using the - - r evi si on (- r) option.

If you want even more information about afile or directory, svn log also takesa- - ver bose (- v) option. Because Subversion al-
lows you to move and copy files and directories, it is important to be able to track path changes in the filesystem. So, in verbose
mode, svn log will include alist of changed pathsin arevision in its output:

$ svnlog -r 8 -v

r8 | sally | 2008-05-21 13:19:25 -0500 (Wed, 21 May 2008) | 1 line
Changed pat hs:

M /trunk/ code/ foo.c

M /trunk/ code/ bar. h

A /trunk/ code/ doc/ READVE

Frozzl ed the sub-space wi nch.

svn log also takes a - - qui et (- q) option, which suppresses the body of the log message. When combined with - - ver bose
(- v), it givesjust the names of the changed files.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

37

Basic Usage

$ svn log -r 2

At first glance, this seems like an error. But recall that while revisions are repository-wide, svn log operates on a path in the
repository. If you supply no path, Subversion uses the current working directory as the default target. As aresult, if you're
operating in a subdirectory of your working copy and attempt to see the log of arevision in which neither that directory nor
any of its children was changed, Subversion will show you an empty log. If you want to see what changed in that revision,
try pointing svn log directly at the topmost URL of your repository, asinsvn log -r 2 ~/.

As of Subversion 1.7, users of the Subversion command-line can aso take advantage of a specia output mode for svn log which
integrates a difference report such as is generated by the svn diff command we introduced earlier. When you invoke svn log with
the - - di f f option, Subversion will append to each revision log chunk in the log report a diff-style difference report. Thisis a
very convenient way to see both the high-level, semantic changes and the line-based modifications of a revision al at the same
time!

Browsing the Repository

Using svn cat and svn list, you can view various revisions of files and directories without changing the working revision of your
working copy. In fact, you don't even need aworking copy to use either one.

svn cat

If you want to examine an earlier version of afile and not necessarily the differences between two files, you can use svn cat:

$ svn cat -r 2 rules.txt

Be kind to others

Freedom = Chocol ate I ce Cream
Everything in noderation

$?hew wi th your nouth open

You can aso redirect the output directly into afile:

$ svn cat -r 2 rules.txt > rules.txt.v2

svn list

The svn list command shows you what files are in a repository directory without actually downloading the files to your local ma-
chine:

$ svn list http://svn.exanpl e.contrepo/ project

38

Basic Usage

READIVE

br anches/
t ags/

t runk/

If you want amore detailed listing, passthe - - ver bose (- v) flag to get output like this:

$ svn list -v http://svn.exanpl e. contf repo/ proj ect

23351 sally Feb 05 13:26 ./

20620 harry 1084 Jul 13 2006 README
23339 harry Feb 04 01:40 branches/
23198 harry Jan 23 17:17 tags/
23351 sally Feb 05 13:26 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who modified it, the size if it is afile,
the date it was last modified, and the item's name.

Thesvn |i st command with ho arguments defaults to the repository URL of the current working directory, not the
local working copy directory. After all, if you want alisting of your local directory, you could use just plain Is (or any
reasonable non-Unixy equivalent).

Fetching Older Repository Snapshots

In addition to all of the previous commands, you can usethe - - r evi si on (- r) option with svn update to take an entire working
copy “back in time”:3

Make the current directory look like it did in ri1729.
$ svn update -r 1729
Updating '.":

$

Many Subversion newcomers attempt to use the preceding svn update example to “undo” committed changes, but

_} this won't work as you can't commit changes that you obtain from backdating a working copy if the changed files
have newer revisions. See the section called “Resurrecting Deleted Items” for a description of how to “undo” a com-
mit.

If you'd prefer to create a whole new working copy from an older snapshot, you can do so by modifying the typical svn checkout
command. Aswith svn update, you can provide the- - r evi si on (- r) option. But for reasons that we cover in the section called
“Peg and Operative Revisions’, you might instead want to specify the target revision as part of Subversion's expanded URL syn-
tax.

3See? We told you that Subversion was a time machine.

39

Basic Usage

Checkout the trunk fromr1729.
$ svn checkout http://svn.exanple.conm svn/repo/trunk@729 trunk-1729

Checkout the current trunk as it |ooked in ri1729.
$ svn checkout http://svn.exanple.com svn/repo/trunk -r 1729 trunk-1729

Lastly, if you're building a release and wish to bundle up your files from Subversion but don't want those pesky . svn directories
in the way, you can use svn export to create alocal copy of all or part of your repository sans. svn directories. The basic syntax
of this subcommand isidentical to that of svn checkout:

Export the trunk fromthe | atest revision.
svn export http://svn.exanpl e.conisvn/repo/trunk trunk-export

Export the trunk fromr1729.
svn export http://svn. exanpl e. com svn/repo/trunk@729 trunk-1729

Export the current trunk as it |ooked in r1729.
svn export http://svn.exanpl e.com svn/repo/trunk -r 1729 trunk-1729

©: UFH:; 6941:5 ©

Sometimes You Just Need to Clean Up

Now that we've covered the day-to-day tasks that you'll frequently use Subversion for, we'll review afew administrative tasks relat-
ing to your working copy.

Disposing of a Working Copy

Subversion doesn't track either the state or the existence of working copies on the server, so there's no server overhead to keeping
working copies around. Likewise, there's no need to let the server know that you're going to delete aworking copy.

If you're likely to use aworking copy again, there's nothing wrong with just leaving it on disk until you're ready to use it again, at
which point all it takesis an svn updateto bring it up to date and ready for use.

However, if you're definitely not going to use aworking copy again, you can safely delete the entire thing using whatever directory
removal capabilities your operating system offers. We recommend that before you do so you run svn st at us and review any
fileslisted in its output that are prefixed with a? to make certain that they're not of importance.

Recovering from an Interruption

When Subversion modifies your working copy—either your files or its own administrative state—it tries to do so as safely as pos-
sible. Before changing the working copy, Subversion logs its intentions in a private “to-do list”, of sorts. Next, it performs those
actions to effect the desired change, holding a lock on the relevant part of the working copy while it works. This prevents other
Subversion clients from accessing the working copy mid-change. Finally, Subversion releasesits lock and cleans up its private to-
do list. Architecturally, thisis similar to ajournaled filesystem. If a Subversion operation is interrupted (e.g, if the processis killed
or if the machine crashes), the private to-do list remains on disk. This alows Subversion to return to that list later to complete any
unfinished operations and return your working copy to a consistent state.

Thisis exactly what svn cleanup does: it searches your working copy and runs any leftover to-do items, removing working copy

40

Basic Usage

locks as it completes those operations. If Subversion ever tells you that some part of your working copy is “locked,” run svn
cleanup to remedy the problem. The svn status command will inform you about administrative locks in the working copy, too, by
displaying an L next to those locked paths:

$ svn status
L sonedir
M sonedi r/ f 0o. ¢
$ svn cl eanup
$ svn status
M sonedi r/ f oo. ¢

Don't confuse these working copy administrative locks with the user-managed locks that Subversion users create when using the
lock-modify-unlock model of concurrent version control; see the sidebar The Three Meanings of “Lock” for clarification.

Dealing with Structural Conflicts

So far, we have only talked about conflicts at the level of file content. When you and your collaborators make overlapping changes
within the same file, Subversion forces you to merge those changes before you can commit.*

But what happens if your collaborators move or delete a file that you are still working on? Maybe there was a miscommunication,
and one person thinks the file should be deleted, while another person still wants to commit changes to the file. Or maybe your col-
laborators did some refactoring, renaming files and moving around directories in the process. If you were still working on these
files, those modifications may need to be applied to the files at their new location. Such conflicts manifest themselves at the direct-
ory tree structure level rather than at the file content level, and are known as tree conflicts.

Tree conflicts prior to Subversion 1.6

Prior to Subversion 1.6, tree conflicts could yield rather unexpected results. For example, if a file was locally modified, but
had been renamed in the repository, running svn update would make Subversion carry out the following steps:

» Check thefile to be renamed for local modifications.

» Deletethefile at its old location, and if it had local modifications, keep an on-disk copy of thefile at the old location. This
on-disk copy now appears as an unversioned file in the working copy.

» Addthefile, asit existsin the repository, at its new location.
When this situation arises, there is the possibility that the user makes a commit without realizing that local modifications
have been left in a now-unversioned file in the working copy, and have not reached the repository. This gets more and more

likely (and tedious) if the number of files affected by this problemislarge.

Since Subversion 1.6, this and other similar situations are flagged as conflicts in the working copy.

Aswith textual conflicts, tree conflicts prevent acommit from being made from the conflicted state, giving the user the opportunity
to examine the state of the working copy for potential problems arising from the tree conflict, and resolving any such problems be-
fore committing.

An Example Tree Conflict

“well, you could mark files containing conflict markers as resolved and commit them, if you really wanted to. But thisis rarely donein practice.

41

Basic Usage

Suppose a software project you were working on currently looked like this:

$ svn list -Rv svn://svn. exanpl e. cont trunk/
6

13 harry Sep 06 10:34 ./

13 harry 27 Sep 06 10: 34 COPYI NG
13 harry 41 Sep 06 10: 32 Makefile
13 harry 53 Sep 06 10: 34 README

13 harry Sep 06 10: 32 code/

13 harry 54 Sep 06 10:32 code/bar.c
13 harry 130 Sep 06 10: 32 code/foo.c

Later, in revision 14, your collaborator Harry renames the file bar . ¢ to baz. c¢. Unfortunately, you don't realize this yet. Asit
turns out, you are busy in your working copy composing a different set of changes, some of which aso involve modifications to
bar. c:

$ svn diff
| ndex: code/foo.c

--- code/foo.c (revision 13)
+++ code/ foo.c (working copy)
@-3,5 +3,5 @@

int main(int argc, char *argv[])

printf("l don't |ike being noved around!\n%", bar());
- return O;
+ return 1,

| ndex: code/bar.c

--- code/bar.c (revision 13)
+++ code/ bar.c (working copy)
@-1,4 +1,4 @@

const char *bar(void)

- return "Me neither!\n";
+ return "Well, | do like being noved around!\n";

You first realize that someone else has changed bar . ¢ when your own commit attempt fails:

$ svn conmit -m"Small fixes"

Sendi ng code/ bar. c

svn: E155011: Commit failed (details follow):

svn: E155011: File '/hone/svn/project/code/bar.c' is out of date
;vn: E160013: File not found: transaction '14-e', path '/code/bar.c'

At this point, you need to run svn update. Besides bringing our working copy up to date so that you can see Harry's changes, this
also flags atree conflict so you have the opportunity to evaluate and properly resolve it.

42

Basic Usage

$ svn update

Updating '."':
C code/ bar.c
A code/ baz. c

U Makefil e

Updated to revision 14,

Summary of conflicts:
Tree conflicts: 1

$

In its output, svn update signifies tree conflicts using a capital C in the fourth output column. svn status reveals additional details
of the conflict:

$ svn status

M code/ foo. ¢
A + C code/bar.c
> | ocal edit, incom ng del ete upon update

Summary of conflicts:
Tree conflicts: 1

Note how bar . ¢ is automatically scheduled for re-addition in your working copy, which simplifies things in case you want to
keep thefile.

Because amove in Subversion isimplemented as a copy operation followed by a delete operation, and these two operations cannot
be easily related to one another during an update, all Subversion can warn you about is an incoming delete operation on a locally
modified file. This delete operation may be part of a move, or it could be a genuine delete operation. Determining exactly what se-
mantic change was made to the repository is important—you want to know just how your own edits fit into the overall tragjectory of
the project. So read log messages, talk to your collaborators, study the line-based differences—do whatever you must do—to de-
termine your best course of action.

In this case, Harry's commit log message tells you what you need to know.

$ svn log -rl1l4 ™ trunk

ri4 | harry | 2011-09-06 10:38:17 -0400 (Tue, 06 Sep 2011) | 1 line
Changed pat hs:

M / Makefile

D /code/ bar.c

A /code/ baz.c (from/code/bar.c: 13)

Renane bar.c to baz.c, and adjust Makefile accordingly.

svn info shows the URLSs of the items involved in the conflict. The left URL shows the source of the loca side of the conflict,
while the right URL shows the source of the incoming side of the conflict. These URLSs indicate where you should start searching
the repository's history for the change which conflicts with your local change.

43

Basic Usage

$ svn info code/bar.c | tail -n 4

Tree conflict: local edit, incomng del ete upon update
Source left: (file) ~/trunk/code/bar.c@
Source right: (none) ~/trunk/code/bar.c@®

bar . ¢ isnow said to be the victim of atree conflict. It cannot be committed until the conflict is resolved:

$ svn conmmit -m"Small fixes"

svn: E155015: Commit failed (details follow):

svn: E155015: Aborting conmt: '/hone/svn/project/code/bar.c' remains in confl
i ct

$

To resolve this conflict, you must either agree or disagree with the move that Harry made.

If you agree with the move, your bar . ¢ is superfluous. You'll want to delete it and mark the tree conflict as resolved. But wait:
you made changes to that file! Before deleting bar . ¢, you need to decide if the changes you made to it need to be applied else-
where, for example to the new baz. c file where all of bar. c's code now lives. Let's assume that your changes do need to
“follow the move’. Subversion isn't smart enough to do thiswork for you5, S0 you need to migrate your changes manually.

In our example, you could manually re-make your changeto bar . ¢ pretty easily—it was, after all, asingle-line change. That's not
always the case, though, so we'll show a more scalable approach. Welll first use svn diff to create a patch file. Then we'll edit the
headers of that patch file to point to the new name of our renamed file. Finally, we re-apply the modified patch to our working

copy.

$ svn diff code/ bar.c > PATCHFI LE
$ cat PATCHFI LE
| ndex: code/bar.c

--- code/bar.c (working copy)
+++ code/ bar.c (working copy)
@_ 1! 4 +1! 4 @

const char *bar (void)

- return "Me neither!\n";
+ return "Well, | do |like being noved around!\n";

}
$ ### Edit PATCHFILE to refer to code/baz.c instead of code/bar.c
$ cat PATCHFI LE
| ndex: code/ baz.c

--- code/baz.c (working copy)
+++ code/ baz.c (working copy)
@_ 1! 4 +1! 4 @

const char *bar (void)

- return "Me neither!\n";
+ return "Well, | do |like being noved around!\n";

}

5In some cases, Subversion 1.5 and 1.6 would actually handle thisfor you, but this somewhat hit-or-miss functionality was removed in Subversion 1.7.

a4

Basic Usage

$ svn patch PATCHFI LE
] code/ baz. c
$

Now that the changes you originally made to bar . ¢ have been successfully reproduced in baz. c, you can delete bar . ¢ and re-
solve the conflict, instructing the resolution logic to accept what is currently in the working copy as the desired result.

$ svn delete --force code/bar.c

D code/ bar. c

$ svn resol ve --accept=worki ng code/bar.c
Resol ved conflicted state of 'code/bar.c
$ svn status

M code/ f 0o. c
M code/ baz. c
$ svn diff

| ndex: code/foo.c

--- code/foo.c (revision 14)
+++ code/foo.c (working copy)
@-3,5 +3,5 @@

int main(int argc, char *argv[])

printf("l don't like being noved around!\n%", bar());
- return O;
+ return 1,

}
| ndex: code/baz.c

--- code/baz.c (revision 14)
+++ code/ baz.c (working copy)
@ - 1! 4 +1! 4 @

const char *bar(voi d)

- return "Me neither!\n";
+ return "Well, | do like being nmoved around!\n";

But what if you do not agree with the move? Well, in that case, you can delete baz. ¢ instead, after making sure any changes
made to it after it was renamed are either preserved or not worth keeping. (Do not forget to also revert the changes Harry made to
Makefi | e.) Since bar . c isaready scheduled for re-addition, there is nothing else left to do, and the conflict can be marked re-
solved:

$ svn delete --force code/ baz.c

D code/ baz. c

$ svn resolve --accept=working code/bar.c
Resol ved conflicted state of 'code/bar.c
$ svn status

M code/ f 0o. c
A + code/ bar.c
D code/ baz. c
M Makefil e

$ svn diff

I ndex: code/foo.c

45

Basic Usage

.-~ code/foo.c (revision 14)
+++ code/ foo.c (working copy)
@ - 3! 5 +3! 5 @

int main(int argc, char *argv[])

printf("l don't like being noved around!\n%", bar());
- return O;
+ return 1;

}
I ndex: code/bar.c

--- code/bar.c (revision 14)
+++ code/ bar.c (working copy)
@a@-1,4 +1,4 @@

const char *bar(voi d)

- return "Me neither!\n";
+ return "Well, | do like being moved around!\n";

}
| ndex: code/baz.c

--- code/baz.c (revision 14)
+++ code/ baz.c (working copy)
@_ 1! 4 +0! 0 @

-const char *bar(void)

- return "Me neither!\n";

-}
| ndex: Makefil e

--- Makefile (revision 14)

+++ Makefile (working copy)

@-1,2 +1,2 @@

foo:

- $(CO -0 $@code/foo.c codel/baz.c
+ $(CCO -0 $@code/foo.c codel/bar.c

Y ou've now resolved your first tree conflict! Y ou can commit your changes and tell Harry during tea break about all the extra work
he caused for you.

Summary

Now we've covered most of the Subversion client commands. Notable exceptions are those dealing with branching and merging
(see Chapter 4, Branching and Merging) and properties (see the section called “ Properties”). However, you may want to take a mo-
ment to skim through Chapter 9, Subversion Complete Reference to get an idea of all the different commands that Subversion
has—and how you can use them to make your work easier.

46

Chapter 3. Advanced Topics

If you've been reading this book chapter by chapter, from start to finish, you should by now have acquired enough knowledge to
use the Subversion client to perform the most common version control operations. Y ou understand how to check out a working
copy from a Subversion repository. Y ou are comfortable with submitting and receiving changes using the svn commit and svn up-
date operations. You've probably even developed a reflex that causes you to run the svn status command almost unconsciously.
For all intents and purposes, you are ready to use Subversion in atypical environment.

But the Subversion feature set doesn't stop at “common version control operations.” It has other bits of functionality besides just
communicating file and directory changesto and from a central repository.

This chapter highlights some of Subversion's features that, while important, may not be part of the typical user'sdaily routine. It as-
sumes that you are familiar with Subversion's basic file and directory versioning capabilities. If you aren't, you'll want to first read
Chapter 1, Fundamental Concepts and Chapter 2, Basic Usage. Once you've mastered those basics and consumed this chapter,
you'll be a Subversion power user!

Revision Specifiers

As we described in the section called “Revisions’, revision numbers in Subversion are pretty straightforward—integers that keep
getting larger as you commit more changes to your versioned data. Still, it doesn't take long before you can no longer remember
exactly what happened in each and every revision. Fortunately, the typical Subversion workflow doesn't often demand that you
supply arbitrary revisions to the Subversion operations you perform. For operations that do require a revision specifier, you gener-
ally supply arevision number that you saw in a commit email, in the output of some other Subversion operation, or in some other
context that would give meaning to that particular number.

Referring to revision numbers with an “r ” prefix (r 314, for example) is an established practice in Subversion com-
/ munities, and is both supported and encouraged by many Subversion-related tools. In most places where you would
specify abare revision number on the command line, you may also use the r NNN syntax.

But occasionally, you need to pinpoint a moment in time for which you don't already have a revision number memorized or handy.
So besides the integer revision numbers, svn allows as input some additional forms of revision specifiers. revision keywords and
revision dates.

The various forms of Subversion revision specifiers can be mixed and matched when used to specify revision ranges.

/ For example, you can use -r REV1: REV2 where REV1 is arevision keyword and REV2 is a revision number, or
where REV1 is a date and REV2 is a revision keyword, and so on. The individual revision specifiers are independ-
ently evaluated, so you can put whatever you want on the opposite sides of that colon.

Revision Keywords

The Subversion client understands a number of revision keywords. These keywords can be used instead of integer arguments to the
--revi sion (- r) option, and are resolved into specific revision numbers by Subversion:
HEAD
The latest (or “youngest”) revision in the repository.
BASE

The revision number of an item in a working copy. If the item has been locally modified, this refers to the way the item ap-
pears without those local modifications.

47

Advanced Topics

COW TTED

The most recent revision prior to, or equal to, BASE, in which an item changed.

PREV

The revision immediately before the last revision in which an item changed. Technically, this boils down to COYW TTED-1.

As can be derived from their descriptions, the PREV, BASE, and COVM TTED revision keywords are used only when referring to a
working copy path—they don't apply to repository URLS. HEAD, on the other hand, can be used in conjunction with both of these
path types.

Here are some examples of revision keywords in action:

HHH HHE HHEHL HHOE HHEHL AL

svn diff -r PREV: COW TTED f 0o0. ¢
shows the last change committed to foo.c

svn log -r HEAD
shows | og nmessage for the |latest repository conmt

svn diff -r HEAD
conpares your working copy (with all of its |ocal changes) to the
| atest version of that tree in the repository

svn diff -r BASE: HEAD f 0o0. c
conpares the unnodified version of foo.c with the |latest version of
foo.c in the repository

svn | og -r BASE: HEAD
shows all commit logs for the current versioned directory since you
| ast updated

svn update -r PREV foo.c
rewi nds the | ast change on foo.c, decreasing foo.c's working revision

svn diff -r BASE: 14 foo.c
conpares the unnodified version of foo.c with the way foo.c | ooked
in revision 14

Revision Dates

Revision numbers reveal nothing about the world outside the version control system, but sometimes you need to correlate a mo-
ment in real time with a moment in version history. To facilitate this, the - - r evi si on (- r) option can also accept as input date
specifiers wrapped in curly braces ({ and }). Subversion accepts the standard 1SO-8601 date and time formats, plus a few others.
Here are some examples.

AAPAPAPAAPAP

svn checkout -r {2006-02-17}

svn checkout -r {15: 30}

svn checkout -r {15:30:00.200000}

svn checkout -r {"2006-02-17 15:30"}

svn checkout -r {"2006-02-17 15:30 +0230"}
svn checkout -r {2006-02-17T15: 30}

svn checkout -r {2006-02-17T15: 307}

svn checkout -r {2006-02-17T15: 30- 04: 00}

48

Advanced Topics

$ svn checkout -r {20060217T1530}
$ svn checkout -r {20060217T1530Z}
$ svn checkout -r {20060217T1530- 0500}

cluded as part of revision date specifiers. Certain shells may also take issue with the unescaped use of curly braces,

<> Keep in mind that most shells will require you to, at a minimum, quote or otherwise escape any spaces that are in-
/ too. Consult your shell's documentation for the requirements specific to your environment.

When you specify a date, Subversion resolves that date to the most recent revision of the repository as of that date, and then contin-
ues to operate against that resolved revision number:

$ svn log -r {2006-11-28}

ri2 | ira | 2006-11-27 12:31:51 -0600 (Mon, 27 Nov 2006) | 6 lines

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example 2006- 11- 27), you may think that
Subversion should give you the last revision that took place on the 27th of November. Instead, you'll get back a revision
from the 26th, or even earlier. Remember that Subversion will find the most recent revision of the repository as of the date
you give. If you give a date without a timestamp, such as2006- 11- 27, Subversion assumes a time of 00:00:00, so looking
for the most recent revision won't return anything on the 27th.

If you want to include the 27th in your search, you can either specify the 27th with thetime ({ " 2006- 11- 27 23: 59"}),
or just specify the next day ({ 2006- 11- 28}).

You can aso use arange of dates. Subversion will find all revisions between both dates, inclusive:

$ svn log -r {2006-11-20}:{2006- 11- 29}

Since the timestamp of a revision is stored as an unversioned, modifiable property of the revision (see the section
called “Properties’), revision timestamps can be changed to represent complete falsifications of true chronology, or
even removed altogether. Subversion's ability to correctly convert revision dates into real revision numbers depends
on revision datestamps maintaining a sequential ordering—the younger the revision, the younger its timestamp. If this
ordering isn't maintained, you will likely find that trying to use dates to specify revision ranges in your repository
doesn't always return the data you might have expected.

Peg and Operative Revisions

We copy, move, rename, and completely replace files and directories on our computers all the time. And your version control sys-

49

Advanced Topics

tem shouldn't get in the way of your doing these things with your version-controlled files and directories, either. Subversion's file
management support is quite liberating, affording almost as much flexibility for versioned files as you'd expect when manipulating
your unversioned ones. But that flexibility means that across the lifetime of your repository, a given versioned object might have
many paths, and a given path might represent several entirely different versioned objects. This introduces a certain level of com-
plexity to your interactions with those paths and objects.

Subversion is pretty smart about noticing when an object's version history includes such “changes of address.” For example, if you
ask for the revision history log of a particular file that was renamed last week, Subversion happily provides al those logs—the re-
vision in which the rename itself happened, plus the logs of relevant revisions both before and after that rename. So, most of the
time, you don't even have to think about such things. But occasionally, Subversion needs your help to clear up ambiguities.

The simplest example of this occurs when a directory or fileis deleted from version control, and then a new directory or fileis cre-
ated with the same name and added to version control. The thing you deleted and the thing you later added aren't the same thing.
They merely happen to have had the same path—/ t r unk/ obj ect , for example. What, then, does it mean to ask Subversion
about the history of / t r unk/ obj ect ? Are you asking about the thing currently at that location, or the old thing you deleted from
that location? Are you asking about the operations that have happened to all the objects that have ever lived at that path? Subver-
sion needs a hint about what you really want.

And thanks to moves, versioned object history can get far more twisted than even that. For example, you might have a directory
named concept , containing some nascent software project you've been toying with. Eventually, though, that project matures to
the point that the idea seems to actually have some wings, so you do the unthinkable and decide to give the project a name.! Let's
say you called your software Frabnaggilywort. At this point, it makes sense to rename the directory to reflect the project's new
name, so concept isrenamed to f r abnaggi | ywor t . Life goes on, Frabnaggilywort releases a 1.0 version and is downloaded
and used daily by hordes of people aiming to improve their lives.

It'sanice story, really, but it doesn't end there. Entrepreneur that you are, you've already got another think in the tank. So you make
anew directory, concept , and the cycle begins again. In fact, the cycle begins again many times over the years, each time start-
ing with that old concept directory, then sometimes seeing that directory renamed as the idea cures, sometimes seeing it del eted
when you scrap the idea. Or, to get really sick, maybe you rename concept to something else for a while, but later rename the
thing back to concept for some reason.

In scenarios like these, attempting to instruct Subversion to work with these reused paths can be alittle like instructing a motorist
in Chicago's West Suburbs to drive east down Roosevelt Road and turn left onto Main Street. In a mere 20 minutes, you can cross
“Main Street” in Wheaton, Glen Ellyn, and Lombard. And no, they aren't the same street. Our motorist—and our Subver-
sion—need alittle more detail to do the right thing.

Fortunately, Subversion allows you to tell it exactly which Main Street you meant. The mechanism used is called a peg revision,
and you provide these to Subversion for the sole purpose of identifying unique lines of history. Because at most one versioned ob-
ject may occupy a path at any given time—or, more precisely, in any one revision—the combination of a path and a peg revision is
all that is needed to unambiguously identify a specific line of history. Peg revisions are specified to the Subversion command-line
client using at syntax, so called because the syntax involves appending an “at sign” (@ and the peg revision to the end of the path
with which the revision is associated.

But what of the - - r evi si on (- r) of which we've spoken so much in this book? That revision (or set of revisions) is called the
operative revision (or operative revision range). Once a particular line of history has been identified using a path and peg revision,
Subversion performs the requested operation usi ng the operative revision(s). To map this to our Chicagoland streets analogy, if we
are told to go to 606 N. Main Street in Wheaton,” we can think of “Main Street” as our path and “Wheaton” as our peg revision.
These two pieces of information identify a unique path that can be traveled (north or south on Main Street), and they keep us from
traveling up and down the wrong Main Street in search of our destination. Now we throw in “606 N.” as our operative revision of
sorts, and we know exactly where to go.

The Peg Revision Algorithm

The Subversion command-line client performs the peg revision algorithm any time it needs to resolve possible ambiguitiesin

ey ou're not supposed to name it. Once you name it, you start getting attached to it.”—Mike Wazowski
2606 N. Main Street, Wheaton, Ilinois, is the home of the Wheaton History Center. It seemed appropriate....

50

Advanced Topics

the paths and revisions provided to it. Here's an example of such an invocation:

$ svn conmand -r OPERATI VE- REV it em@EG REV

If OPERATI VE- REV isolder than PEG REV, the algorithm is as follows:

1. Locatei t emin the revision identified by PEG- REV. There can be only one such object.
2. Trace the object's history backwards (through any possible renames) to its ancestor in the revision OPERATI VE- REV.

3. Perform the requested action on that ancestor, wherever it islocated, or whatever its name might be or might have been at
that time.

But what if OPERATI VE- REV is younger than PEG REV? Well, that adds some complexity to the theoretical problem of
locating the path in OPERATI VE- REV, because the path's history could have forked multiple times (thanks to copy opera-
tions) between PEG- REV and OPERATI VE- REV. And that's not all—Subversion doesn't store enough information to per-
formantly trace an object's history forward, anyway. So the algorithm is alittle different:

1. Locatei t emin therevision identified by OPERATI VE- REV. There can be only one such object.
2. Tracethe object's history backward (through any possible renames) to its ancestor in the revision PEG- REV.

3. Verify that the object's location (path-wise) in PEG- REV is the same as it is in OPERATI VE- REV. If that's the case, at
least the two locations are known to be directly related, so perform the requested action on the location in OPERATI VE-
REV. Otherwise, relatedness was not established, so error out with a loud complaint that no viable location was found.
(Someday, we expect that Subversion will be able to handle this usage scenario with more flexibility and grace.)

Note that even when you don't explicitly supply a peg revision or operative revision, they are still present. For your conveni-
ence, the default peg revision is BASE for working copy items and HEAD for repository URLs. And when no operative revi-
sionis provided, it defaults to being the same revision as the peg revision.

Say that long ago we created our repository, and in revision 1 we added our first concept directory, plusan | DEA filein that dir-
ectory talking about the concept. After several revisions in which real code was added and tweaked, we, in revision 20, renamed
this directory to f r abnaggi | ywor t . By revision 27, we had a new concept, a new concept directory to hold it, and a new
| DEA fileto describeit. And then five years and thousands of revisions flew by, just like they would in any good romance story.

Now, years later, we wonder what the | DEA file looked like back in revision 1. But Subversion needs to know whether we are ask-
ing about how the current file looked back in revision 1, or whether we are asking for the contents of whatever file lived at con-
cept s/ | DEA in revision 1. Certainly those questions have different answers, and because of peg revisions, you can ask those
guestions. To find out how the current | DEA file looked in that old revision, you run:

$ svn cat -r 1 concept/I|DEA
svn: E195012: Unable to find repository location for 'concept/IDEA in revision 1

Of courseg, in this example, the current | DEA file didn't exist yet in revision 1, so Subversion gives an error. The previous com-
mand is shorthand for alonger notation which explicitly lists a peg revision. The expanded notation is:

51

Advanced Topics

$ svn cat -r 1 concept/| DEA@ASE
svn: E195012: Unable to find repository |location for 'concept/IDEA in revision 1

And when executed, it has the expected results.

The perceptive reader is probably wondering at this point whether the peg revision syntax causes problems for working copy paths
or URLsthat actually have at signsin them. After all, how does svh know whether news @1 is the name of adirectory in my tree
or just asyntax for “revision 11 of news”? Thankfully, while svn will always assume the latter, thereis atrivial workaround. Y ou
need only append an at sign to the end of the path, such as news @ 1@ svn cares only about the last at sign in the argument, and it
isnot considered illegal to omit a literal peg revision specifier after that at sign. This workaround even applies to paths that end in
an at sign—you would usef i | enane@@to talk about afilenamedfi | enane@

Let's ask the other question, then—in revision 1, what were the contents of whatever file occupied the address concept s/ | DEA
at the time? We'll use an explicit peg revision to help us out.

$ svn cat concept/| DEA@

The idea behind this project is to cone up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ramfications, so
we need to enpl oy over-the-top input validation and data verification
nmechani sns.

Notice that we didn't provide an operative revision this time. That's because when no operative revision is specified, Subversion as-
sumes a default operative revision that's the same as the peg revision.

As you can see, the output from our operation appears to be correct. The text even mentions frabbing naggily worts, so thisis al-
most certainly the file that describes the software now called Frabnaggilywort. In fact, we can verify this using the combination of
an explicit peg revision and explicit operative revision. We know that in HEAD, the Frabnaggilywort project is located in the
frabnaggi | ywort directory. So we specify that we want to see how the line of history identified in HEAD as the path f r abn-

aggi | ywor t/ | DEA looked in revision 1.

$ svn cat -r 1 frabnaggil ywort/| DEAGHEAD

The idea behind this project is to cone up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky

busi ness, and doing it incorrectly can have serious ram fications, so
we need to enploy over-the-top input validation and data verification
nmechani sns.

And the peg and operative revisions need not be so trivial, either. For example, say f r abnaggi | ywort had been deleted from
HEAD, but we know it existed in revision 20, and we want to see the diffs for its | DEA file between revisions 4 and 10. We can use
peg revision 20 in conjunction with the URL that would have held Frabnaggilywort's | DEA file in revision 20, and then use 4 and
10 as our operative revision range.

$ svn diff -r 4:10 http://svn.red-bean. coni projects/frabnaggi | ywort/| DEA@QO
I ndex: frabnaggil ywort/| DEA

--- frabnaggi |l ywort/ | DEA (revision 4)

52

Advanced Topics

+++ frabnaggil ywort/ |1 DEA (revision 10)

@-1,5 +1,5 @@

-The idea behind this project is to cone up with a piece of software
-that can frab a naggily wort. Frabbing naggily worts is tricky

-busi ness, and doing it incorrectly can have serious ramfications, so
-we need to enploy over-the-top input validation and data verification
- mechani sis.

+The i dea behind this project is to cone up with a piece of
+client-server software that can renotely frab a naggily wort.
+Frabbi ng naggily worts is tricky business, and doing it incorrectly
+can have serious ranifications, so we need to enploy over-the-top

+i nput validation and data verification nmechanisns.

Fortunately, most folks aren't faced with such complex situations. But when you are, remember that peg revisions are that extra
hint Subversion needs to clear up ambiguity.

Properties

We've already covered in detail how Subversion stores and retrieves various versions of files and directories in its repository.
Whole chapters have been devoted to this most fundamental piece of functionality provided by the tool. And if the versioning sup-
port stopped there, Subversion would still be complete from a version control perspective.

But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding, modifying, and removing versioned
metadata on each of your versioned directories and files. We refer to this metadata as properties, and they can be thought of as
two-column tables that map property names to arbitrary values attached to each item in your working copy. Generally speaking, the
names and values of the properties can be whatever you want them to be, with the constraint that the names must contain only AS-
Cll characters. And the best part about these properties is that they, too, are versioned, just like the textual contents of your files.
Y ou can modify, commit, and revert property changes as easily as you can file content changes. And the sending and receiving of
property changes occurs as part of your typical commit and update operations—you don't have to change your basic processes to
accommodate them.

ful of such propertiesin use today, you should avoid creating custom properties for your own needs whose names be-
gin with this prefix. Otherwise, you run the risk that a future release of Subversion will grow support for a feature or
behavior driven by a property of the same name but with perhaps an entirely different interpretation.

<> Subversion has reserved the set of properties whose names begin with svn: asits own. While there are only a hand-

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbitrary property names and values at-
tached to them, each revision as awhole may have arbitrary properties attached to it. The same constraints apply—human-readable
names and anything-you-want binary values. The main difference is that revision properties are not versioned. In other words, if
you change the value of, or delete, arevision property, there's no way, within the scope of Subversion's functionality, to recover the
previous value.

Subversion has no particular policy regarding the use of properties. It asks only that you do not use property nhames that begin with
the prefix svn: as that's the namespace that it sets aside for its own use. And Subversion does, in fact, use properties—both the
versioned and unversioned variety. Certain versioned properties have special meaning or effects when found on files and director-
ies, or they house a particular bit of information about the revisions on which they are found. Certain revision properties are auto-
matically attached to revisions by Subversion's commit process, and they carry information about the revision. Most of these prop-
erties are mentioned elsewhere in this or other chapters as part of the more general topics to which they are related. For an exhaust-
ive list of Subversion's predefined properties, see the section called “Subversion Properties’ in Chapter 9, Subversion Complete
Reference.

53

Advanced Topics

it does not presume thereafter the existence of those properties, and neither should you or the tools you use to interact
with your repository. Revision properties can be deleted programmatically or viathe client (if allowed by the reposit-
ory hooks) without damaging Subversion's ability to function. So, when writing scripts which operate on your Sub-
version repository data, do not make the mistake of assuming that any particular revision property exists on a revi-
sion.

<> While Subversion automatically attaches properties (svn: dat e, svn: aut hor, svn: | og, and so on) to revisions,

In this section, we will examine the utility—both to users of Subversion and to Subversion itself—of property support. You'll learn
about the property-related svn subcommands and how property modifications affect your normal Subversion workflow.

Why Properties?

Just as Subversion uses properties to store extra information about the files, directories, and revisions that it contains, you might
also find properties to be of similar use. You might find it useful to have a place close to your versioned data to hang custom
metadata about that data.

Say you wish to design a web site that houses many digital photos and displays them with captions and a datestamp. Now, your set
of photos is constantly changing, so you'd like to have as much of this site automated as possible. These photos can be quite large,
so asis common with sites of this nature, you want to provide smaller thumbnail images to your site visitors.

Now, you can get this functionality using traditional files. That is, you can have your i nragel23.jpg and an i m
agel23-t hunbnail . j pg side by side in a directory. Or if you want to keep the filenames the same, you might have your
thumbnails in a different directory, such ast hunbnai | s/ i magel23. j pg. You can also store your captions and datestampsin
asimilar fashion, again separated from the original image file. But the problem here is that your collection of files multiplies with
each new photo added to the site.

Now consider the same web site deployed in away that makes use of Subversion's file properties. Imagine having a single image
file, i magel23. j pg, with properties set on that file that are named capt i on, dat est anp, and even t hunbnai | . Now your
working copy directory looks much more manageable—in fact, it looks to the casual browser like there are nothing but image files
in it. But your automation scripts know better. They know that they can use svn (or better yet, they can use the Subversion lan-
guage bindings—see the section called “Using the APIS") to dig out the extra information that your site needs to display without
having to read an index file or play path manipulation games.

optimally carry large property values or large sets of properties on a given file or directory. Subversion commonly
holds all the property names and values associated with a single item in memory at the same time, which can cause
detrimental performance or failed operations when extremely large property sets are used.

<> While Subversion places few restrictions on the names and values you use for properties, it has not been designed to

Custom revision properties are also frequently used. One common such use is a property whose value contains an issue tracker ID
with which the revision is associated, perhaps because the change made in that revision fixes a bug filed in the tracker issue with
that 1D. Other uses include hanging more friendly names on the revision—it might be hard to remember that revision 1935 was a
fully tested revision. But if there's, say, at est - r esul t s property on that revision with the valueal | passi ng, that's mean-
ingful information to have. And Subversion allows you to easily do this viathe - - wi t h- r evpr op option of the svn commit
command:

$ svn commit -m"Fix up the last remaining known regression bug." \
--with-revprop "test-results=all passing"

Sendi ng lib/crit_bits.c

Transmitting file data .

gomn’ tted revision 912.

Advanced Topics

Searchability (or, Why Not Properties)

For all their utility, Subversion properties—or, more accurately, the available interfaces to them—have a major shortcoming:
whileit is asimple matter to set a custom property, finding that property later is awhole different ball of wax.

Trying to locate a custom revision property generally involves performing alinear walk across all the revisions of the repos-
itory, asking of each revision, “Do you have the property I'm looking for?" Usethe--wi t h- al | - r evpr ops option with
the svn log command's XML output mode to facilitate this search. Notice the presence of the custom revision property
t estresul t s inthefollowing output:

$ svn log --with-all-revprops --xm lib/crit_bits.c
<?xm version="1.0"?>
<l og>
<l ogentry
revision="912">
<aut hor >harry</ aut hor >
<dat e>2011- 07-29T14: 47: 41. 1698947</ dat e>
<msg>Fi x up the last remaining known regression bug. </ nsg>
<revprops>
<property
nane="t estresul ts">al |l passi ng</property>
</ revprops>
</l ogentry>

=

Trying to find a custom versioned property is painful, too, and often involves a recursive svn propget across an entire work-
ing copy. In your situation, that might not be as bad as a linear walk across all revisions. But it certainly leaves much to be
desired in terms of both performance and likelihood of success, especialy if the scope of your search would require a work-
ing copy from the root of your repository.

For this reason, you might choose—especially in the revision property use case—to simply add your metadata to the revi-

sion's log message using some policy-driven (and perhaps programmatically enforced) formatting that is designed to be
quickly parsed from the output of svn log. It is quite common to see the following in Subversion log messages:

| ssue(s): 122376, 1271919
Revi ewed by: sally

This fixes a nasty segfault in the wort frabbing process

But here again lies some misfortune. Subversion doesn't yet provide a log message templating mechanism, which would go a
long way toward helping users be consistent with the formatting of their log-embedded revision metadata.

Manipulating Properties

The svn program affords a few ways to add or modify file and directory properties. For properties with short, human-readable val-
ues, perhaps the simplest way to add a new property is to specify the property name and value on the command line of the svn
propset subcommand:

55

Advanced Topics

$ svn propset copyright '(c) 2006 Red-Bean Software' cal c/button.c
property 'copyright' set on 'calc/button.c’
$

But we've been touting the flexibility that Subversion offers for your property values. And if you are planning to have a multiline
textual, or even binary, property value, you probably do not want to supply that value on the command line. So the svn propset
subcommand takesa- - f i | e (- F) option for specifying the name of afile that contains the new property value.

$ svn propset license -F /path/to/LI CENSE cal c/button.c
property 'license' set on 'calc/button.c'
$

There are some restrictions on the names you can use for properties. A property name must start with aletter, acolon (:), or an un-
derscore (_); after that, you can also use digits, hyphens (-), and periods (.).3

In addition to the propset command, the svn program supplies the propedit command. This command uses the configured editor
program (see the section called “ Config”) to add or modify properties. When you run the command, svn invokes your editor pro-
gram on atemporary file that contains the current value of the property (or that is empty, if you are adding a new property). Then,
you just modify that value in your editor program until it represents the new value you wish to store for the property, save the tem-
porary file, and then exit the editor program. If Subversion detects that you've actually changed the existing value of the property, it
will accept that as the new property value. If you exit your editor without making any changes, no property modification will oc-
cur:

$ svn propedit copyright calc/button.c ### exit the editor without changes
No changes to property 'copyright' on 'calc/button.c'
$

We should note that, as with other svn subcommands, those related to properties can act on multiple paths at once. This enables
you to modify properties on whole sets of files with a single command. For example, we could have done the following:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/*
property 'copyright' set on 'cal c/ Makefile'

property 'copyright' set on 'calc/button.c'

property 'copyright' set on 'calc/integer.c'

$

All of this property adding and editing isn't really very useful if you can't easily get the stored property value. So the svn program
supplies two subcommands for displaying the names and values of properties stored on files and directories. The svn proplist com-
mand will list the names of properties that exist on a path. Once you know the names of the properties on the node, you can request
their values individually using svn propget. This command will, given a property name and a path (or set of paths), print the value
of the property to the standard output stream.

81 you're familiar with XML, thisis pretty much the ASCI| subset of the syntax for XML “Name”.
56

Advanced Topics

$ svn proplist calc/button.c
Properties on 'calc/button.c’

copyri ght

license
$ svn propget copyright calc/button.c
(c) 2006 Red-Bean Software

There's even a variation of the proplist command that will list both the name and the value for al of the properties. Simply supply
the- - ver bose (- v) option.

$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software
i cense

Copyright (c) 2006 Red-Bean Software. All rights reserved.

Redi stribution and use in source and binary forns, with or w thout
nodi fication, are pernmitted provided that the follow ng conditions
are net:

1. Redistributions of source code must retain the above copyri ght
notice, this list of conditions, and the recipe for Fitz's fanmous
red- beans-and-ri ce.

The last property-related subcommand is propdel. Since Subversion allows you to store properties with empty values, you can't re-
move a property altogether using svn propedit or svn propset. For example, this command will not yield the desired effect:

$ svn propset license "" calc/button.c
property 'license' set on 'calc/button.c
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software
i cense

Y ou need to use the propdel subcommand to delete properties altogether. The syntax is similar to the other property commands:

$ svn propdel license calc/button.c
property 'license' deleted from'calc/button.c'.
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyri ght
(c) 2006 Red-Bean Software

57

Advanced Topics

Remember those unversioned revision properties? You can modify those, too, using the same svn subcommands that we just de-
scribed. Simply add the - - r evpr op command-line parameter and specify the revision whose property you wish to modify. Since
revisions are global, you don't need to specify atarget path to these property-related commands so long as you are positioned in a
working copy of the repository whose revision property you wish to modify. Otherwise, you can simply provide the URL of any
path in the repository of interest (including the repository's root URL). For example, you might want to replace the commit log
message of an existing revision.* If your current working directory is part of aworking copy of your repository, you can simply run
the svn propset command with no target path:

$ svn propset svn:log "* button.c: Fix a conpiler warning." -rl1ll --revprop
property 'svn:log' set on repository revision '11'
$

But even if you haven't checked out a working copy from that repository, you can still effect the property change by providing the
repository'sroot URL :

$ svn propset svn:log "* button.c: Fix a conpiler warning." -rl1l --revprop \
http://svn. exanpl e. coni r epos/ pr oj ect

property 'svn:log' set on repository revision '11'

$

Note that the ability to modify these unversioned properties must be explicitly added by the repository administrator (see the sec-
tion called “Commit Log Message Correction”). That's because the properties aren't versioned, so you run the risk of losing in-
formation if you aren't careful with your edits. The repository administrator can set up methods to protect against this loss, and by
default, modification of unversioned propertiesis disabled.

Users should, where possible, use svn propedit instead of svn propset. While the end result of the commands is

_') identical, the former will allow them to see the current value of the property that they are about to change, which
helps them to verify that they are, in fact, making the change they think they are making. Thisis especially true when
modifying unversioned revision properties. Also, it is significantly easier to modify multiline property valuesin atext
editor than at the command line.

Properties and the Subversion Workflow

Now that you are familiar with al of the property-related svn subcommands, let's see how property modifications affect the usual
Subversion workflow. As we mentioned earlier, file and directory properties are versioned, just like your file contents. As a result,
Subversion provides the same opportunities for merging—cleanly or with conflicts—someone el se's modifications into your own.

As with file contents, your property changes are local modifications, made permanent only when you commit them to the reposit-
ory with svn commit. Y our property changes can be easily unmade, too—the svn revert command will restore your files and dir-
ectories to their unedited states—contents, properties, and all. Also, you can receive interesting information about the state of your
file and directory properties by using the svn status and svn diff commands.

4Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness’ in commit log messages is perhaps the most common use case for the - - r evpr op op-
tion.

58

Advanced Topics

$ svn status cal c/button.c
M calc/button.c
$ svn diff calc/button.c
Property changes on: cal c/button.c

Added: copyri ght

-0,0 +1

+(c) 2006 Red-Bean Software
$

Notice how the status subcommand displays Min the second column instead of the first. That is because we have modified the
propertieson cal ¢/ but t on. c, but not its textual contents. Had we changed both, we would have seen Min the first column, too.
(We cover svn statusin the section called “ See an overview of your changes”).

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by someone else. If you update your
working copy directory and receive property changes on a versioned object that clash with your own, Subversion will report
that the object isin a conflicted state.

$ svn update calc
Updating 'calc':
M cal c/ Makefile.in
Conflict for property 'linecount' discovered on 'calc/button.c'.
Sel ect: (p) postpone, (df) diff-full, (e) edit,
(s) show all options: p

C calc/button.c
Updated to revision 143.
Summary of conflicts:

Property conflicts: 1

Subversion will also create, in the same directory as the conflicted object, afilewith a. pr ej extension that contains the de-
tails of the conflict. Y ou should examine the contents of this file so you can decide how to resolve the conflict. Until the con-
flict isresolved, you will see a Cin the second column of svn status output for that object, and attempts to commit your local
modifications will fail.

$ svn status calc
C cal c/button.c
? cal c/button. c. prej
$ cat cal c/button.c.prej
Trying to change property 'linecount' from'1267' to '1301',
gut property has been locally changed from'1267' to '1256'.

To resolve property conflicts, simply ensure that the conflicting properties contain the values that they should, and then use
the svn resolve --accept=wor king command to alert Subversion that you have manually resolved the problem.

59

Advanced Topics

You might also have noticed the nonstandard way that Subversion currently displays property differences. You can still use svn
diff and redirect its output to create a usable patch file. The patch program will ignore property patches—as arule, it ignores any
noise it can't understand. This does, unfortunately, mean that to fully apply a patch generated by svn diff using patch, any property
modifications will need to be applied by hand.

Subversion 1.7 improves this situation in two ways. First, its nonstandard display of property differencesis at least machine-read-
able—an improvement over the display of properties in versions prior to 1.7. But Subversion 1.7 also introduces the svn patch
subcommand, designed specifically to handle the additional information which svn diff's output can carry, applying those changes
to the Subversion working copy. Of specific relevance to our topic, property differences present in patch files generated by svn diff
in Subversion 1.7 or better can be automatically applied to a working copy by the svn patch command. For more about svn patch,
see svn patch in Chapter 9, Subversion Complete Reference.

There's one exception to how property changes are reported by svn diff: changes to Subversion's specia

/ svn: mer gei nf o property—used to track information about merges which have been performed in your reposit-
ory—are described in a more human-readable fashion. Thisis quite helpful to the humans who have to read those de-
scriptions. But it also serves to cause patching programs (including svn patch) to skip those change descriptions as
noise. This might sound like a bug, but it really isn't because this property isintended to be managed solely by the svn
mer ge subcommand. For more about merge tracking, see Chapter 4, Branching and Merging.

Automatic Property Setting

Properties are a powerful feature of Subversion, acting as key components of many Subversion features discussed elsewhere in this
and other chapters—textual diff and merge support, keyword substitution, newline translation, and so on. But to get the full benefit
of properties, they must be set on the right files and directories. Unfortunately, that step can be easily forgotten in the routine of
things, especially since failing to set a property doesn't usually result in an obvious error (at least compared to, say, failing to add a
file to version control). To help your properties get applied to the places that need them, Subversion provides a couple of simple
but useful features.

Whenever you introduce a file to version control using the svn add or svn import commands, Subversion tries to assist by setting
some common file properties automatically. First, on operating systems whose filesystems support an execute permission bit, Sub-
version will automatically set the svn: execut abl e property on newly added or imported files whose execute bit is enabled.
(See the section called “File Executability” later in this chapter for more about this property.)

Second, Subversion tries to determine the file's MIME type. If you've configured ani ne-t ypes-fi | es runtime configuration
parameter, Subversion will try to find a MIME type mapping in that file for your file's extension. If it finds such a mapping, it will
set your file's svn: mi nme-t ype property to the MIME type it found. If no mapping file is configured, or no mapping for your
file's extension could be found, Subversion will fall back to heuristic algorithms to determine the file's MIME type. Depending on
how it is built, Subversion 1.7 can make use of file scanning libraries® to detect a file's type based on its content. Failing all else,
Subversion will employ its own very basic heuristic to determine whether the file contains nontextual content. If so, it automatic-
aly sets the svn: m me-t ype property on that file to appl i cati on/ oct et - st r eam (the generic “this is a collection of
bytes” MIME type). Of course, if Subversion guesses incorrectly, or if you wish to set the svn: i ne-type property to
something more precise—perhaps i mage/ png or appl i cati on/ x- shockwave- f | ash—you can always remove or edit
that property. (For more on Subversion's use of MIME types, see the section called “File Content Type” later in this chapter.)

UTF-16 is commonly used to encode files whose semantic content is textual in nature, but the encoding itself makes

/ heavy use of bytes which are outside the typical ASCII character byte range. As such, Subversion will tend to classify
such files as binary files, much to the chagrin of users who desire line-based differencing and merging, keyword sub-
stitution, and other behaviors for those files.

Subversion also provides, via its runtime configuration system (see the section called “Runtime Configuration Ared’), a more flex-
ible automatic property setting feature that allows you to create mappings of filename patterns to property names and values. Once
again, these mappings affect adds and imports, and can not only override the default MIME type decision made by Subversion dur-

5Current|y, libmagic is the support library used to accomplish this.

60

Advanced Topics

ing those operations, but can also set additional Subversion or custom properties, too. For example, you might create a mapping
that says that anytime you add JPEG files—ones whose names match the pattern * . j pg—Subversion should automatically set the
svn: m ne-type property on those files to i nage/j peg. Or perhaps any files that match *. cpp should have
svn: eol -styl esettonati ve,andsvn: keywor ds setto| d. Automatic property support is perhaps the handiest property-re-
lated tool in the Subversion toolbox. See the section called “Config” for more about configuring that support.

which al connecting clients will automatically consider when operating on working copies checked out from that
server. Unfortunately, Subversion doesn't offer this feature. Administrators can use hook scripts to validate that the
properties added to and modified on files and directories match the administrator's preferred policies, rejecting com-
mits which are non-compliant in this fashion. (See the section called “Implementing Repository Hooks” for more
about hook scripts.) But there's no way to automatically dictate those preferences to Subversion clients beforehand.

O/ Subversion administrators commonly ask if it is possible to configure, on the server side, a set of property definitions

File Portability

Fortunately for Subversion users who routinely find themselves on different computers with different operating systems, Subver-
sion's command-line program behaves almost identically on all those systems. If you know how to wield svn on one platform, you
know how to wield it everywhere.

However, the same is not always true of other general classes of software or of the actual files you keep in Subversion. For ex-
ample, on a Windows machine, the definition of a “text file” would be similar to that used on a Linux box, but with a key differ-
ence—the character sequences used to mark the ends of the lines of those files. There are other differences, too. Unix platforms
have (and Subversion supports) symboalic links; Windows does not. Unix platforms use filesystem permission to determine execut-
ability; Windows uses filename extensions.

Because Subversion is in no position to unite the whole world in common definitions and implementations of all of these things,
the best it can do isto try to help make your life simpler when you need to work with your versioned files and directories on mul-
tiple computers and operating systems. This section describes some of the ways Subversion does this.

File Content Type

Subversion joins the ranks of the many applications that recognize and make use of Multipurpose Internet Mail Extensions
(MIME) content types. Besides being a genera-purpose storage location for a file's content type, the value of the
svn: m me- t ype file property determines some behavioral characteristics of Subversion itself.

Identifying File Types

Various programs on most modern operating systems make assumptions about the type and format of the contents of a file
by the file's name, specificaly its file extension. For example, files whose namesend in . t xt are generally assumed to be
human-readable; that is, able to be understood by simple perusal rather than requiring complex processing to decipher. Files
whose names end in . png, on the other hand, are assumed to be of the Portable Network Graphics type—not human-read-
able at all, and sensible only when interpreted by software that understands the PNG format and can render the information
in that format as a raster image.

Unfortunately, some of those extensions have changed their meanings over time. When personal computers first appeared, a
file named README. DOC would have ailmost certainly been a plain-text file, just like today's . t xt files. But by the mid-
1990s, you could almost bet that a file of that name would not be a plain-text file at al, but instead a Microsoft Word docu-
ment in a proprietary, non-human-readable format. But this change didn't occur overnight—there was certainly a period of
confusion for computer users over what exactly they had in hand when they saw a. DOCfile.

The popularity of computer networking cast still more doubt on the mapping between a file's name and its content. With in-
formation being served across networks and generated dynamically by server-side scripts, there was often no real file per se,
and therefore no filename. Web servers, for example, needed some other way to tell browsers what they were downloading

5y ou think that was rough? During that same era, WordPerfect also used . DOC for their proprietary file format's preferred extension!

61

Advanced Topics

so that the browser could do something intelligent with that information, whether that was to display the data using a pro-
gram registered to handle that datatype or to prompt the user for where on the client machine to store the downloaded data.

Eventually, a standard emerged for, among other things, describing the contents of a data stream. In 1996, RFC 2045 was
published. It was the first of five RFCs describing MIME. It describes the concept of media types and subtypes and recom-
mends a syntax for the representation of those types. Today, MIME media types—or “MIME types’—are used almost uni-
versally across email applications, web servers, and other software as the de facto mechanism for clearing up the file content
confusion.

For example, one of the benefits that Subversion typically provides is contextual, line-based merging of changes received from the
server during an update into your working file. But for files containing nontextual data, there is often no concept of a“line.” So, for
versioned fileswhose svn: mi me-t ype property is set to a nontextual MIME type (generally, something that doesn't begin with
t ext /, though there are exceptions), Subversion does not attempt to perform contextual merges during updates. Instead, any time
you have locally modified a binary working copy file that is also being updated, your file is left untouched and Subversion creates
two new files. Onefilehasa. ol dr ev extension and contains the BASE revision of thefile. The other filehasa. newr ev exten-
sion and contains the contents of the updated revision of the file. This behavior isrealy for the protection of the user against failed
attempts at performing contextual merges on files that ssmply cannot be contextually merged.

Thesvn: m me-t ype property, when set to a value that does not indicate textua file contents, can cause some un-
expected behaviors with respect to other properties. For example, since the idea of line endings (and therefore, line-
ending conversion) makes no sense when applied to nontextual files, Subversion will prevent you from setting the
svn: eol - st yl e property on such files. This is obvious when attempted on a single file target—svn propset will
error out. But it might not be as clear if you perform arecursive property set, where Subversion will silently skip over
filesthat it deems unsuitable for a given property.

Subversion provides a number of mechanisms by which to automatically set the svn: nmi ne-t ype property on a versioned file.
See the section called “ Automatic Property Setting” for details.

Also, if the svn: mi nme-t ype property is set, then the Subversion Apache module will use its value to populate the Cont ent -
t ype: HTTP header when responding to GET requests. This gives your web browser a crucial clue about how to display afile
when you use it to peruse your Subversion repository's contents.

File Executability

On many operating systems, the ability to execute a file as a command is governed by the presence of an execute permission bit.
This bit usually defaults to being disabled, and must be explicitly enabled by the user for each file that needs it. But it would be a
monumental hassle to have to remember exactly which filesin a freshly checked-out working copy were supposed to have their ex-
ecutable bits toggled on, and then to have to do that toggling. So, Subversion provides the svn: execut abl e property as a way
to specify that the executable bit for the file on which that property is set should be enabled, and Subversion honors that request
when populating working copies with such files.

This property has no effect on filesystems that have no concept of an executable permission hit, such as FAT32 and NTFS. Also,
although it has no defined values, Subversion will forceits value to * when setting this property. Finally, this property isvalid only
on files, not on directories.

End-of-Line Character Sequences

Unless otherwise noted using a versioned file'ssvn: m nme-t ype property, Subversion assumes the file contains human-readable
data. Generally speaking, Subversion uses this knowledge only to determine whether contextual difference reports for that file are
possible. Otherwise, to Subversion, bytes are bytes.

"The Windows fi lesystems use file extensions (such as. EXE, . BAT, and . COM) to denote executable files.
62

Advanced Topics

This means that by default, Subversion doesn't pay any attention to the type of end-of-line (EOL) markers used in your files. Un-
fortunately, different operating systems have different conventions about which character sequences represent the end of a line of
text in afile. For example, the usual line-ending token used by software on the Windows platform is a pair of ASCII control char-
acters—a carriage return (CR) followed by aline feed (LF). Unix software, however, just uses the LF character to denote the end of
aline.

Not all of the various tools on these operating systems understand files that contain line endings in a format that differs from the
native line-ending style of the operating system on which they are running. So, typically, Unix programs treat the CR character
present in Windows files as aregular character (usually rendered as M, and Windows programs combine all of the lines of a Unix
file into one giant line because no carriage return-linefeed (or CRLF) character combination was found to denote the ends of the
lines.

This sensitivity to foreign EOL markers can be frustrating for folks who share a file across different operating systems. For ex-
ample, consider a source code file, and developers who edit this file on both Windows and Unix systems. If all the developers al-
ways use tools that preserve the line-ending style of the file, no problems occur.

But in practice, many common tools either fail to properly read afile with foreign EOL markers, or convert the file's line endings
to the native style when the file is saved. If the former is true for a developer, he has to use an external conversion utility (such as
dos2unix or its companion, unix2dos) to prepare the file for editing. The latter case requires no extra preparation. But both cases
result in afile that differs from the original quite literally on every line! Prior to committing his changes, the user has two choices.
Either he can use a conversion utility to restore the modified file to the same line-ending style that it was in before his edits were
made, or he can simply commit the file—new EOL markers and all.

The result of scenarios like these include wasted time and unnecessary modifications to committed files. Wasted time is painful
enough. But when commits change every line in afile, this complicates the job of determining which of those lines were changed
in anontrivial way. Where was that bug really fixed? On what line was a syntax error introduced?

The solution to this problem isthe svn: eol - st yl e property. When this property is set to avalid value, Subversion usesit to de-
termine what special processing to perform on the file so that the file's line-ending style isn't flip-flopping with every commit that
comes from a different operating system. The valid values are;

native
This causes the file to contain the EOL markers that are native to the operating system on which Subversion was run. In other
words, if auser on a Windows machine checks out aworking copy that contains afile with an svn: eol - st yl e property set
tonati ve, that file will contain CRLF EOL markers. A Unix user checking out a working copy that contains the same file
will see LF EOL markersin his copy of thefile.

Note that Subversion will actually store the file in the repository using normalized LF EOL markers regardless of the operating
system. Thisis basically transparent to the user, though.

CRLF
This causes the file to contain CRLF sequences for EOL markers, regardless of the operating system in use.

LF
This causes the file to contain LF characters for EOL markers, regardless of the operating system in use.

CR
This causes the file to contain CR characters for EOL markers, regardless of the operating system in use. Thisline-ending style
is hot very common.

Ignoring Unversioned ltems

In any given working copy, there is a good chance that alongside all those versioned files and directories are other files and direct-
ories that are neither versioned nor intended to be. Text editors litter directories with backup files. Software compilers generate in-
termediate—or even final—files that you typically wouldn't bother to version. And users themselves drop various other files and
directories wherever they seefit, often in version control working copies.

63

Advanced Topics

It's ludicrous to expect Subversion working copies to be somehow impervious to this kind of clutter and impurity. In fact, Subver-
sion counts it as a feature that its working copies are just typica directories, just like unversioned trees. But these not-
to-be-versioned files and directories can cause some annoyance for Subversion users. For example, because the svn add and svn
import commands act recursively by default and don't know which filesin a given tree you do and don't wish to version, it's easy
to accidentally add stuff to version control that you didn't mean to. And because svn status reports, by default, every item of in-
terest in a working copy—including unversioned files and directories—its output can get quite noisy where many of these things
exist.

So Subversion provides two ways for telling it which files you would prefer that it simply disregard. One of the ways involves the
use of Subversion's runtime configuration system (see the section called “Runtime Configuration Area’), and therefore applies to
all the Subversion operations that make use of that runtime configuration—generally those performed on a particular computer or
by a particular user of a computer. The other way makes use of Subversion's directory property support and is more tightly bound
to the versioned tree itself, and therefore affects everyone who has a working copy of that tree. Both of the mechanisms use file
patterns (strings of literal and special wildcard characters used to match against filenames) to decide which files to ignore.

The Subversion runtime configuration system provides an option, gl obal - i gnor es, whose value is a whitespace-delimited col-
lection of file patterns. The Subversion client checks these patterns against the names of the files that are candidates for addition to
version control, as well as to unversioned files that the svn status command notices. If any file's name matches one of the patterns,
Subversion will basically act asif the file didn't exist at all. Thisisreally useful for the kinds of files that you almost never want to
version, such as editor backup files such as Emacs * ~ and . * ~ files.

File Patterns in Subversion

File patterns (also called globs or shell wildcard patterns) are strings of characters that are intended to be matched against fi-
lenames, typically for the purpose of quickly selecting some subset of similar files from a larger grouping without having to
explicitly name each file. The patterns contain two types of characters: regular characters, which are compared explicitly
against potential matches, and special wildcard characters, which are interpreted differently for matching purposes.

There are different types of file pattern syntaxes, but Subversion uses the one most commonly found in Unix systems imple-
mented asthe f nmat ch system function. It supports the following wildcards, described here simply for your convenience:

?
Matches any single character

*

Matches any string of characters, including the empty string
[

Begins a character class definition terminated by] , used for matching a subset of characters

Y ou can see this same pattern matching behavior at a Unix shell prompt. The following are some examples of patterns being
used for various things:

$1s ### the book sources

appa- qui ckstart. xnl ch06- server -configuration. xnl
appb-svn-for-cvs-users. xni ch07- cust om zi ng- svn. xm
appc- webdav. xm ch08- enbeddi ng- svn. xni

book. xm ch09-ref erence. xm

ch00- pr ef ace. xml ch10- wor | d- peace-t hr u- svn. xml
ch01- f undament al - concept s. xml copyri ght. xm

ch02- basi c- usage. xm foreword. xm

ch03- advanced-t opi cs. xm i mages/

chO04- br anchi ng- and- ner gi ng. xm i ndex. xml

chO05-r eposi t ory-adm n. xni styl es. css

$ Is ch* ### the book chapters

Advanced Topics

ch0O0- pr ef ace. xm ch06- server - confi gurati on. xm
ch01-f undament al - concept s. xml chQ07- cust om zi ng- svn. xm
ch02- basi c- usage. xni ch08- enbeddi ng- svn. xm

ch03- advanced-t opi cs. xm ch09-r ef erence. xm

ch04- br anchi ng- and- ner gi ng. xm ch10-wor| d- peace-t hru-svn. xni
chO05-reposi t ory-adm n. xni

$ Is ch?0-* ### the book chapters whose nunbers end in zero

ch00- preface. xm ch10-wor | d- peace-t hru-svn. xnl

$ Is chO[3578] -* ### the book chapters that M ke is responsible for
ch03- advanced-t opi cs. xnl ch07- cust om zi ng- svn. xm

ghOS— reposi tory-adm n. xm ch08- enbeddi ng-svn. xn

File pattern matching is a bit more complex than what we've described here, but this basic usage level tends to suit the major-
ity of Subversion users.

When found on a versioned directory, the svn: i gnor e property is expected to contain a list of newline-delimited file patterns
that Subversion should use to determine ignorable objects in that same directory. These patterns do not override those found in the
gl obal -i gnor es runtime configuration option, but are instead appended to that list. And it's worth noting again that, unlike the
gl obal -i gnor es option, the patterns found in the svn: i gnor e property apply only to the directory on which that property is
set, and not to any of its subdirectories. The svn: i gnor e property is a good way to tell Subversion to ignore files that are likely
to be present in every user's working copy of that directory, such as compiler output or—to use an example more appropriate to
this book—the HTML, PDF, or PostScript files generated as the result of a conversion of some source DocBook XML files to a
more legible output format.

directories to version control. Once an object is under Subversion's control, the ignore pattern mechanisms no longer
apply to it. In other words, don't expect Subversion to avoid committing changes you've made to a versioned file
simply because that file's name matches an ignore pattern—Subversion always notices all of its versioned objects.

O/ Subversion's support for ignorable file patterns extends only to the one-time process of adding unversioned files and

Ignore Patterns for CVS Users

The Subversion svn: i gnor e property is very similar in syntax and function to the CVS. cvsi gnor e file. In fact, if you
are migrating a CV'S working copy to Subversion, you can directly migrate the ignore patterns by using the . cvsi gnor e
file asinput file to the svn propset command:

$ svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'

There are, however, some differences in the ways that CVS and Subversion handle ignore patterns. The two systems use the
ignore patterns at some different times, and there are dight discrepancies in what the ignore patterns apply to. Also, Subver-
sion does not recognize the use of the! pattern as areset back to having no ignore patterns at all.

The global list of ignore patterns tends to be more a matter of personal taste and ties more closely to a user's particular tool chain
than to the details of any particular working copy's needs. So, the rest of this section will focus on the svn: i gnor e property and
its uses.

65

Advanced Topics

Say you have the following output from svn status:

$ svn status calc

M cal c/button.c
cal ¢/ cal cul at or
cal c/data.c
cal ¢/ debug_| og
cal ¢/ debug |l og. 1
cal ¢/ debug_| 0g. 2. gz
cal ¢/ debug_| og. 3. gz

N N N N N)

In this example, you have made some property modificationsto but t on. ¢, but in your working copy, you also have some unver-
sioned files: the latest cal cul at or program that you've compiled from your source code, a source file named dat a. ¢, and a set
of debugging output logfiles. Now, you know that your build system aways results in the cal cul at or program being
generated.s And you know that your test suite always leaves those debugging logfiles lying around. These facts are true for all
working copies of this project, not just your own. And you know that you aren't interested in seeing those things every time you
run svn status, and you are pretty sure that nobody else is interested in them either. So you usesvn propedit svn:ignore
cal ¢ to add someignore patternsto the cal c¢ directory.

$ svn propget svn:ignore calc
cal cul at or

debug | og*

$

After you've added this property, you will now have alocal property modification on the cal ¢ directory. But notice what else is
different about your svn status output:

$ svn status

M cal c
M calc/button.c
? calc/data.c

Now, all that cruft is missing from the output! Your cal cul at or compiled program and all those logfiles are still in your work-
ing copy; Subversion just isn't constantly reminding you that they are present and unversioned. And now with all the uninteresting
noise removed from the display, you are left with more intriguing items—such as that source code file dat a. ¢ that you probably
forgot to add to version control.

Of course, this less-verbose report of your working copy status isn't the only one available. If you actually want to see the ignored
files as part of the status report, you can passthe - - no- i gnor e option to Subversion:

$ svn status --no-ignore
M cal c
M cal c/button.c
| cal ¢/ cal cul ator
? cal c/data.c
I cal ¢/ debug_| og

8lsn't that the whole point of abuild system?

66

Advanced Topics

I cal ¢/ debug |l og. 1
I cal ¢/ debug_| og. 2. gz
I cal ¢/ debug_| og. 3. gz

As mentioned earlier, the list of file patterns to ignore is also used by svn add and svn import. Both of these operations involve
asking Subversion to begin managing some set of files and directories. Rather than force the user to pick and choose which filesin
atree she wishes to start versioning, Subversion uses the ignore patterns—both the global and the per-directory lists—to determine
which files should not be swept into the version control system as part of alarger recursive addition or import operation. And here
again, you can use the - - no- i gnor e option to tell Subversion to disregard its ignores list and operate on al the files and direct-
ories present.

are expanded into an explicit list of targets before Subversion operates on them, so running svn SUBCOMMVAND * is
just likerunningsvn SUBCOVMVAND filel file2 file3 ...Inthecaseof thesvn add command, this has an
effect similar to passing the - - no- i gnor e option. So instead of using awildcard, usesvn add --force . to
do abulk scheduling of unversioned things for addition. The explicit target will ensure that the current directory isn't
overlooked because of being already under version control, and the - - f or ce option will cause Subversion to crawl
through that directory, adding unversioned files while still honoring the svn: i gnor e property and gl obal -i g-
nor es runtime configuration variable. Be sure to also provide the - - dept h fi | es option to the svn add com-
mand if you don't want afully recursive crawl for things to add.

@j Even if svn: i gnor e is set, you may run into problems if you use shell wildcards in a command. Shell wildcards

Keyword Substitution

Subversion has the ability to substitute keywords—pieces of useful, dynamic information about a versioned file—into the contents
of the file itself. Keywords generally provide information about the last modification made to the file. Because this information
changes each time the file changes, and more importantly, just after the file changes, it is a hassle for any process except the ver-
sion control system to keep the data completely up to date. Left to human authors, the information would inevitably grow stale.

For example, say you have a document in which you would like to display the last date on which it was modified. Y ou could bur-
den every author of that document to, just before committing their changes, also tweak the part of the document that describes
when it was last changed. But sooner or later, someone would forget to do that. Instead, smply ask Subversion to perform keyword
substitution on the Last ChangedDat e keyword. You control where the keyword is inserted into your document by placing a
keyword anchor at the desired location in thefile. Thisanchor isjust astring of text formatted as $Keywor dNane$.

All keywords are case-sensitive where they appear as anchorsin files: you must use the correct capitalization for the keyword to be
expanded. Y ou should consider the value of the svn: keywor ds property to be case-sensitive, too—certain keyword names will
be recognized regardless of case, but this behavior is deprecated.

Subversion defines the list of keywords available for substitution. That list contains the following keywords, some of which have
aliases that you can also use:

Dat e
This keyword describes the last time the file was known to have been changed in the repository, and is of the form $Dat e:
2006- 07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $.Itmay aso be specified as Last ChangedDat e. Un-
likethe |l d keyword, which uses UTC, the Dat e keyword displays dates using the local time zone.

Revi si on
This keyword describes the last known revision in which this file changed in the repository, and looks something like
$Revi sion: 144 $. It may also be specified as Last ChangedRevi si on or Rev.

Aut hor
This keyword describes the last known user to change this file in the repository, and looks something like $Aut hor : harry

67

Advanced Topics

$. It may aso be specified asLast ChangedBy.

HeadURL
This keyword describes the full URL to the latest version of the file in the repository, and looks something like $Head URL :
http://svn. exanpl e. conf repos/trunk/cal c. c $. It may be abbreviated as URL.

Id
This keyword is a compressed combination of the other keywords. Its substitution looks something like $1 d: cal c. ¢ 148
2006- 07- 28 21:30:43Z sal ly $,andisinterpreted to mean that thefilecal c. ¢ waslast changed in revision 148 on
the evening of July 28, 2006 by the user sal | y. The date displayed by this keyword is in UTC, unlike that of the Dat e
keyword (which uses the local time zone).

Header
This keyword is similar to the | d keyword but contains the full URL of the latest revision of the item, identical to Head URL.
Its substitution looks something like $Header: http://svn. exanple.com repos/trunk/calc.c 148
2006-07-28 21:30:43Z sally $.

Several of the preceding descriptions use the phrase “last known” or similar wording. Keep in mind that keyword expansion is a
client-side operation, and your client “knows” only about changes that have occurred in the repository when you update your work-
ing copy to include those changes. If you never update your working copy, your keywords will never expand to different values
even if those versioned files are being changed regularly in the repository.

Simply adding keyword anchor text to your file does nothing special. Subversion will never attempt to perform textual substitu-
tions on your file contents unless explicitly asked to do so. After al, you might be writing adocument® about how to use keywords,
and you don't want Subversion to substitute your beautiful examples of unsubstituted keyword anchors!

To tell Subversion whether to substitute keywords on a particular file, we again turn to the property-related subcommands. The
svn: keywor ds property, when set on a versioned file, controls which keywords will be substituted on that file. The value is a
space-delimited list of keyword names or aliases.

For example, say you have aversioned file named weat her . t xt that lookslike this:

Here is the latest report fromthe front |ines.

$Last ChangedDat e$

Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

With no svn: keywor ds property set on that file, Subversion will do nothing special. Now, let's enable substitution of the
Last ChangedDat e keyword.

$ svn propset svn: keywords "Date Author" weather.txt
property 'svn: keywords' set on 'weather.txt'
$

Now you have made a local property modification on the weat her . t xt file. You will see no changes to the file's contents
(unless you made some of your own prior to setting the property). Notice that the file contained a keyword anchor for the Rev
keyword, yet we did not include that keyword in the property value we set. Subversion will happily ignore requests to substitute
keywords that are not present in the file and will not substitute keywords that are not present in the svn: keywor ds property
value.

S..or maybe even a section of abook ...

68

Advanced Topics

Immediately after you commit this property change, Subversion will update your working file with the new substitute text. |nstead
of seeing your keyword anchor $Last ChangedDat e$, you'll see its substituted result. That result also contains the name of the
keyword and continues to be delimited by the dollar sign ($) characters. And as we predicted, the Rev keyword was not substi-
tuted because we didn't ask for it to be.

Note also that we set the svn: keywords property to Date Author, yet the keyword anchor used the alias
$Last ChangedDat e$ and still expanded correctly:

Here is the latest report fromthe front |ines.

%Lasgsd’langedDate: 2006- 07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $
Rev

Cumul us cl ouds are appearing nore frequently as sumer approaches.

If someone else now commits a change to weat her . t xt, your copy of that file will continue to display the same substituted
keyword value as before—until you update your working copy. At that time, the keywords in your weat her . t xt file will be re-
substituted with information that reflects the most recent known commit to that file.

Where's $GlobalRev$?

New users are often confused by how the Rev keyword works. Since the repository has a single, globally increasing revi-
sion number, many people assume that it is this number that is reflected by the Rev keyword's value. But Rev expands
to show the last revision in which the file changed, not the last revision to which it was updated. Understanding this clears
the confusion, but frustration often remains—without the support of a Subversion keyword to do so, how can you automatic-
ally get the global revision number into your files?

To do this, you need external processing. Subversion ships with a tool called svnversion, which was designed for just this
purpose. It crawls your working copy and generates as output the revision(s) it finds. Y ou can use this program, plus some
additional tooling, to embed that revision information into your files. For more information on svnversion, see the section
called “svnversion—Subversion Working Copy Version Info” in Chapter 9, Subversion Complete Reference.

You can also instruct Subversion to maintain a fixed length (in terms of the number of bytes consumed) for the substituted
keyword. By using a double colon (: :) after the keyword name, followed by a number of space characters, you define that fixed
width. When Subversion goes to substitute your keyword for the keyword and its value, it will essentially replace only those space
characters, leaving the overall width of the keyword field unchanged. If the substituted value is shorter than the defined field width,
there will be extra padding characters (spaces) at the end of the substituted field; if it istoo long, it is truncated with a special hash
(#) character just before the final dollar sign terminator.

For example, say you have a document in which you have some section of tabular data reflecting the document's Subversion
keywords. Using the original Subversion keyword substitution syntax, your file might look something like:

Rev: Revi si on of last commt
$Aut hor$: Author of last commt
$Dat e$: Date of |ast commit

Now, that looks nice and tabular at the start of things. But when you then commit that file (with keyword substitution enabled, of
COUrSE), you See:

$Rev: 12 $: Revi sion of |ast commt

69

Advanced Topics

$Author: harry $: Author of last commit
$Dat e: 2006-03-15 02: 33: 03 -0500 (Wed, 15 Mar 2006) $: Date of last conmt

The result is not so beautiful. And you might be tempted to then adjust the file after the substitution so that it again looks tabular.
But that holds only as long as the keyword values are the same width. If the last committed revision rolls into a new place value
(say, from 99 to 100), or if another person with alonger username commits the file, stuff gets al crooked again. However, if you
are using Subversion 1.2 or later, you can use the new fixed-length keyword syntax and define some field widths that seem sane, so
your file might look like this:

$Rev: : $: Revision of last conmt
$Aut hor: : $: Author of last commt
$Dat e: : $: Date of |ast commit

Y ou commit this change to your file. This time, Subversion notices the new fixed-length keyword syntax and maintains the width
of the fields as defined by the padding you placed between the double colon and the trailing dollar sign. After substitution, the
width of the fields is completely unchanged—the short values for Rev and Aut hor are padded with spaces, and the long Dat e
field is truncated by a hash character:

$Rev:: 13 $: Revision of last conmt
$Aut hor:: harry $: Author of last conmt
$Date:: 2006-03-15 0#$%:. Date of last commt

The use of fixed-length keywords is especialy handy when performing substitutions into complex file formats that themselves use
fixed-length fields for data, or for which the stored size of a given data field is overbearingly difficult to modify from outside the
format's native application. Of course, where binary file formats are concerned, you must always take great care that any keyword
substitution you introduce—fixed-length or otherwise—does not violate the integrity of that format. While it might sound easy
enough, this can be an astonishingly difficult task for most of the popular binary file formats in use today, and not something to be
undertaken by the faint of heart!

Be aware that because the width of a keyword field is measured in bytes, the potential for corruption of multibyte val-
ues exists. For example, a username that contains some multibyte UTF-8 characters might suffer truncation in the
middle of the string of bytes that make up one of those characters. The result will be a mere truncation when viewed
at the byte level, but will likely appear as a string with an incorrect or garbled final character when viewed as UTF-8
text. It is conceivable that certain applications, when asked to load the file, would notice the broken UTF-8 text and
deem the entire file corrupt, refusing to operate on the file altogether. So, when limiting keywords to a fixed size,
choose a size that alows for this type of byte-wise expansion.

Sparse Directories

By default, most Subversion operations on directories act in a recursive manner. For example, svn checkout creates a working
copy with every file and directory in the specified area of the repository, descending recursively through the repository tree until
the entire structure is copied to your local disk. Subversion 1.5 introduces a feature called sparse directories (or shallow checkouts)
that allows you to easily check out a working copy—or a portion of a working copy—more shallowly than full recursion, with the
freedom to bring in previously ignored files and subdirectories at alater time.

For example, say we have arepository with atree of files and directories with names of the members of a human family with pets.

70

Advanced Topics

(It'san odd example, to be sure, but bear with us.) A regular svn checkout operation will give us aworking copy of the whole tree:

svn checkout file:///var/svn/repos nom
nonm son
noni son/ gr andson
nom daught er
noni daught er/ gr anddaught er 1
noni daught er/ gr anddaught er 1/ bunny1. t xt
nmont daught er/ gr anddaught er 1/ bunny2. t xt
nmoni daught er / gr anddaught er 2
nmoni daught er/fi shie. t xt
mom ki ttyl. txt
nmonl doggi el. t xt
ecked out revision 1.

®QP>P>BP>>>>>>B

Now, let's check out the same tree again, but this time we'll ask Subversion to give us only the topmost directory with none of its
children at al:

$ svn checkout file:///var/svn/repos nomenpty --depth enpty
Checked out revision 1
$

Notice that we added to our original svn checkout command line anew - - dept h option. This option is present on many of Sub-
version's subcommands and is similar to the - - non-r ecur si ve (-N) and - - r ecur si ve (- R) options. In fact, it combines,
improves upon, supercedes, and ultimately obsoletes these two older options. For starters, it expands the supported degrees of
depth specification available to users, adding some previously unsupported (or inconsistently supported) depths. Here are the depth
values that you can request for a given Subversion operation:

--depth enpty
Include only the immediate target of the operation, not any of itsfile or directory children.

--depth files
Include the immediate target of the operation and any of itsimmediate file children.

--depth i nmedi at es
Include the immediate target of the operation and any of its immediate file or directory children. The directory children will
themselves be empty.

--depth infinity
Include the immediate target, its file and directory children, its children's children, and so on to full recursion.

Of course, merely combining two existing options into one hardly constitutes a new feature worthy of a whole section in our book.
Fortunately, there is more to this story. This idea of depth extends not just to the operations you perform with your Subversion cli-
ent, but also as a description of a working copy citizen's ambient depth, which is the depth persistently recorded by the working
copy for that item. Its key strength is this very persistence—the fact that it is sticky. The working copy remembers the depth you've
selected for each item in it until you later change that depth selection; by default, Subversion commands operate on the working
copy citizens present, regardless of their selected depth settings.

71

Advanced Topics

You can check the recorded ambient depth of a working copy using the svn info command. If the ambient depth is
_) anything other than infinite recursion, svn info will display aline describing that depth value:

$ svn info nominmediates | grep ""Depth:"
Dept h: i nmedi at es
$

Our previous examples demonstrated checkouts of infinite depth (the default for svn checkout) and empty depth. Let's look now at
examples of the other depth values:

$ svn checkout file:///var/svn/repos nomfiles --depth files

A mmfiles/kittyl.txt

A momfil es/ doggi el. t xt

Checked out revision 1.

$ svn checkout file:///var/svn/repos nominmedi ates --depth i mmedi at es
A nom i mredi at es/ son

A nmom i nredi at es/ daught er
A nmom i nedi at es/ ki ttyl.txt
A nmom i nmedi at es/ doggi el. t xt

Checked out revision 1.

As described, each of these depths is something more than only the target, but something less than full recursion.

We've used svn checkout as an example here, but you'll find the - - dept h option present on many other Subversion commands,
too. In those other commands, depth specification is away to limit the scope of an operation to some depth, much like the way the
older - - non-recursi ve (-N)and - - r ecur si ve (- R) options behave. This means that when operating on a working copy of
some depth, while requesting an operation of a shallower depth, the operation is limited to that shallower depth. In fact, we can
make an even more genera statement: given a working copy of any arbitrary—even mixed—ambient depth, and a Subversion
command with some requested operational depth, the command will maintain the ambient depth of the working copy members
while still limiting the scope of the operation to the requested (or default) operational depth.

In addition to the - - dept h option, the svn update and svn switch subcommands also accept a second depth-related option: -
- set - dept h. It iswith this option that you can change the sticky depth of a working copy item. Watch what happens as we take
our empty-depth checkout and gradually telescope it deeper using svn updat e - - set - dept h NEW DEPTH TARGET:

$ svn update --set-depth files nmomenpty
Updating 'nomenpty':

A momenpty/ kittiel.txt

A mom enpt y/ doggi el. t xt

Updated to revision 1.

$ svn update --set-depth i medi ates nom enpty
Updating ' momenpty':

A nmom enpt y/ son

A nmom enpt y/ daught er

Updated to revision 1.

$ svn update --set-depth infinity nmomenpty
Updating ' nomenpty':

A nom enpt y/ son/ gr andson

A nom enpt y/ daught er / gr anddaught er 1

72

Advanced Topics

A nom enpt y/ daught er/ gr anddaught er 1/ bunny1. t xt
A nmom enpt y/ daught er/ gr anddaught er 1/ bunny2. t xt
A nmom enpt y/ daught er/ gr anddaught er 2

A mom enpt y/ daught er/ fi shi el. t xt

gpdat ed to revision 1.

Aswe gradually increased our depth selection, the repository gave us more pieces of our tree.

In our example, we operated only on the root of our working copy, changing its ambient depth value. But we can independently
change the ambient depth value of any subdirectory inside the working copy, too. Careful use of this ability allows us to flesh out
only certain portions of the working copy tree, leaving other portions absent altogether (hence the “sparse” bit of the feature's
name). Here's an example of how we might build out a portion of one branch of our family's tree, enable full recursion on another
branch, and keep still other pieces pruned (absent from disk).

$rm-rf momenpty

$ svn checkout file:///var/svn/repos nomenpty --depth enpty
Checked out revision 1.

$ svn update --set-depth enpty nmom enpty/son

Updating ' nom enpty/son':

A nmom enpt y/ son

Updated to revision 1.

$ svn update --set-depth enpty nmom enpty/daught er

Updati ng ' nom enpty/ daughter' :

A nom enpt y/ daught er

Updated to revision 1.

$ svn update --set-depth infinity nom enpty/ daught er/ granddaughterl
Updati ng ' nom enpt y/ daught er/ gr anddaught er 1" :

A nom enpt y/ daught er / gr anddaught er 1

A nom enpt y/ daught er/ gr anddaught er 1/ bunny1. t xt

A nom enpt y/ daught er/ gr anddaught er 1/ bunny2. t xt

gpdat ed to revision 1.

Fortunately, having a complex collection of ambient depths in a single working copy doesn't complicate the way you interact with
that working copy. You can still make, revert, display, and commit local modifications in your working copy without providing
any new options (including - - dept h and - - set - dept h) to the relevant subcommands. Even svn update works as it does else-
where when no specific depth is provided—it updates the working copy targets that are present while honoring their sticky depths.

Y ou might at this point be wondering, “ So what? When would | use this?’ One scenario where this feature finds utility istied to a
particular repository layout, specifically where you have many related or codependent projects or software modules living as sib-
lings in a single repository location (t r unk/ proj ect 1, t runk/ proj ect 2, t runk/ pr oj ect 3, etc.). In such scenarios, it
might be the case that you personally care about only a handful of those projects—maybe some primary project and a few other
modules on which it depends. Y ou can check out individual working copies of all of these things, but those working copies are dis-
joint and, as aresult, it can be cumbersome to perform operations across several or all of them at the same time. The aternative is
to use the sparse directories feature, building out a single working copy that contains only the modules you care about. You'd start
with an empty-depth checkout of the common parent directory of the projects, and then update with infinite depth only the items
you wish to have, like we demonstrated in the previous example. Think of it like an opt-in system for working copy citizens.

The origina (Subversion 1.5) implementation of shallow checkouts was good, but didn't support de-telescopi ng of working copy
items. Subversion 1.6 remedied this problem. For example, runnlng svn update --set-depth enpty inaninfinite-depth
working copy will discard everything but the topmost di rectory 9 Subversion 1.6 also introduced another supported value for the -

10s4fely, of course. Asin other situations, Subversion will leave on disk any files you've modified or which aren't versioned.

73

Advanced Topics

- set - dept h option: excl ude. Using - - set - dept h excl ude with svn update will cause the update target to be removed
from the working copy entirely—a directory target won't even be left present-but-empty. This is especialy handy when there are
more things that you'd like to keep in aworking copy than things you'd like to not keep.

Consider a directory with hundreds of subdirectories, one of which you would like to omit from your working copy. Using an
“additive” approach to sparse directories, you might check out the directory with an empty depth, then explicitly telescope (using
svn update --set-depth infinity)eachandevery subdirectory of the directory except the one you don't care about.

svn checkout http://svn. exanple.confrepos/ many-dirs --depth enpty
svn update --set-depth infinity many-dirs/wanted-dir-1

svn update --set-depth infinity many-dirs/wanted-dir-2

695 695 69; ©~

svn update --set-depth infinity many-dirs/wanted-dir-3

it and so on, and so on,

This could be quite tedious, especially since you don't even have stubs of these directoriesin your working copy to deal with. Such
aworking copy would aso have another characteristic that you might not expect or desire: if someone €lse creates any new subdir-
ectories in this top-level directory, you won't receive those when you update your working copy.

Beginning with Subversion 1.6, you can take a different approach. First, check out the directory in full. Thenrunsvn update -
-set -dept h excl ude on the one subdirectory you don't care about.

$ svn checkout http://svn.exanpl e.con repos/ many-dirs

$ svn update --set-depth exclude nmany-dirs/unwant ed-dir
D many-di r s/ unwant ed-di r
$

This approach leaves your working copy with the same stuff as in the first approach, but any new subdirectories which appear in
the top-level directory would also show up when you update your working copy. The downside of this approach is that you have to
actually check out that whole subdirectory that you don't even want just so you can tell Subversion that you don't want it. This
might not even be possible if that subdirectory is too large to fit on your disk (which might, after all, be the very reason you don't
want it in your working copy).

While the functionality for excluding an existing item from a working copy was hung off of the svn update com-

/ mand, you might have noticed that the output fromsvn updat e --set-depth excl ude differsfrom that of a
normal update operation. This output betrays the fact that, under the hood, exclusion is a completely client-side oper-
ation, very much unlike atypical update.

In such a situation, you might consider a compromise approach. First, check out the top-level directory with - - dept h i nredi -
at es. Then, exclude the directory you don't want using svn update --set-depth excl ude. Finaly, telescope al the
items that remain to infinite depth, which should be fairly easy to do because they are all addressable in your shell.

$ svn checkout http://svn.exanple.comrepos/ many-dirs --depth i nmedi ates

$ svn update --set-depth exclude many-dirs/unwant ed-dir
D many- di r s/ unwant ed-di r

74

Advanced Topics

$ svn update --set-depth infinity many-dirs/*

g

Once again, your working copy will have the same stuff as in the previous two scenarios. But now, any time a new file or subdir-
ectory is committed to the top-level directory, you'll receive it—at an empty depth—when you update your working copy. Y ou can
now decide what to do with such newly appearing working copy items. expand them into infinite depth, or exclude them altogeth-
er.

Locking

Subversion's copy-modify-merge version control model lives and dies on its data merging algorithms—specifically on how well
those algorithms perform when trying to resolve conflicts caused by multiple users modifying the same file concurrently. Subver-
sion itself provides only one such algorithm: athree-way differencing algorithm that is smart enough to handle data at a granularity
of asingle line of text. Subversion also allows you to supplement its content merge processing with external differencing utilities
(as described in the section called “External diff3” and the section called “External merge”), some of which may do an even better
job, perhaps providing granularity of aword or a single character of text. But common among those algorithms is that they gener-
ally work only on text files. The landscape starts to look pretty grim when you start talking about content merges of nontextual file
formats. And when you can't find a tool that can handle that type of merging, you begin to run into problems with the copy-
modify-merge model.

Let'slook at areal-life example of where this model runs aground. Harry and Sally are both graphic designers working on the same
project, a bit of marketing collateral for an automobile mechanic. Central to the design of a particular poster is an image of acar in
need of some bodywork, stored in afile using the PNG image format. The poster's layout is ailmost finished, and both Harry and
Sally are pleased with the particular photo they chose for their damaged car—a baby blue 1967 Ford Mustang with an unfortunate
bit of crumpling on the |eft front fender.

Now, as is common in graphic design work, there's a change in plans, which causes the car's color to be a concern. So Sally up-
dates her working copy to HEAD, fires up her photo-editing software, and sets about tweaking the image so that the car is now
cherry red. Meanwhile, Harry, fedling particularly inspired that day, decides that the image would have greater impact if the car
also appears to have suffered greater impact. He, too, updates to HEAD, and then draws some cracks on the vehicle's windshield.
He manages to finish his work before Saly finishes hers, and after admiring the fruits of his undeniable talent, he commits the
modified image. Shortly thereafter, Sally is finished with the car's new finish and tries to commit her changes. But, as expected,
Subversion fails the commit, informing Sally that her version of the image is now out of date.

Here's where the difficulty setsin. If Harry and Sally were making changes to a text file, Sally would simply update her working
copy, receiving Harry's changes in the process. In the worst possible case, they would have modified the same region of the file,
and Sally would have to work out by hand the proper resolution to the conflict. But these aren't text files—they are binary images.
And while it's a simple matter to describe what one would expect the results of this content merge to be, there is precious little
chance that any software exists that is smart enough to examine the common baseline image that each of these graphic artists
worked againgt, the changes that Harry made, and the changes that Sally made, and then spit out an image of a busted-up red Mus-
tang with a cracked windshield!

Of course, things would have gone more smoothly if Harry and Sally had serialized their modifications to the image—if, say,
Harry had waited to draw his windshield cracks on Sally's now-red car, or if Sally had tweaked the color of a car whose windshield
was aready cracked. Asis discussed in the section called “The copy-modify-merge solution”, most of these types of problems go
away entirely where perfect communication between Harry and Sally exists.!! But as one's version control system is, in fact, one
form of communication, it follows that having that software facilitate the serialization of nonparallelizable editing efforts is no bad
thing. This is where Subversion's implementation of the lock-modify-unlock model steps into the spotlight. This is where we talk
about Subversion's locking feature, which is similar to the “reserved checkouts’ mechanisms of other version control systems.

Subversion's locking feature exists ultimately to minimize wasted time and effort. By allowing a user to programmatically claim
the exclusive right to change afile in the repository, that user can be reasonably confident that any energy he invests on unmerge-

Hcommunication wouldn't have been such bad medicine for Harry and Sally's Hollywood namesakes, either, for that matter.

75

Advanced Topics

able changes won't be wasted—his commit of those changes will succeed. Also, because Subversion communicates to other users
that serialization is in effect for a particular versioned object, those users can reasonably expect that the object is about to be
changed by someone else. They, too, can then avoid wasting their time and energy on unmergeable changes that won't be commit-
table due to eventual out-of-dateness.

When referring to Subversion's Iocklng feature, oneis actually talking about a fairly diverse collection of behaviors, which include
the ability to lock a versioned file'? (claiming the exclusive right to modify the file), to unlock that file (yielding that exclusive
right to modify), to see reports about which files are locked and by whom, to annotate files for which locking before editing is
strongly advised, and so on. In this section, we'll cover all of these facets of the larger locking feature.

The Three Meanings of “Lock”

In this section, and almost everywhere in this book, the words “lock” and “locking” describe a mechanism for mutual exclu-
sion between users to avoid clashing commits. Unfortunately, there are two other sorts of “lock” with which Subversion, and
therefore this book, sometimes needs to be concerned.

The second is working copy locks, used internally by Subversion to prevent clashes between multiple Subversion clients op-
erating on the same working copy. Thisis the sort of lock indicated by an L in the third column of svn status output, and re-
moved by the svn cleanup command, as described in the section called “ Sometimes Y ou Just Need to Clean Up”.

Third, there are database locks, used internally by the Berkeley DB backend to prevent clashes between multiple programs
trying to access the database. This is the sort of lock whose unwanted persistence after an error can cause a repository to be
“wedged,” as described in the section called “Berkeley DB Recovery”.

You can generally forget about these other kinds of locks until something goes wrong that requires you to care about them.
In this book, “lock” means the first sort unless the contrary is either clear from context or explicitly stated.

Creating Locks

In the Subversion repository, alock is a piece of metadata that grants exclusive access to one user to change afile. This user is said
to be the lock owner. Each lock also has a unique identifier, typically along string of characters, known as the lock token. The re-
pository manages locks, ultimately handling their creation, enforcement, and removal. If any commit transaction attempts to modi-
fy or delete a locked file (or delete one of the parent directories of the file), the repository will demand two pieces of informa
tion—that the client performing the commit be authenticated as the lock owner, and that the lock token has been provided as part of
the commit process as aform of proof that the client knows which lock it is using.

To demonstrate lock creation, let's refer back to our example of multiple graphic designers working on the same binary image files.
Harry has decided to change a JPEG image. To prevent other people from committing changes to the file while he is modifying it
(aswell as alerting them that he is about to change it), he locks the file in the repository using the svn lock command.

$ svn lock banana.jpg -m"Editing file for tonorrow s rel ease. "
" banana.j pg’ | ocked by user "harry'.

The preceding example demonstrates a number of new things. First, notice that Harry passed the - - message (- nj option to svn
lock. Similar to svn commit, the svn lock command can take comments—via either - - nessage (-m or --fil e (- F)—to de-
scribe the reason for locking the file. Unlike svn commit, however, svn lock will not demand a message by launching your pre-
ferred text editor. Lock comments are optional, but still recommended to aid communication.

Second, the lock attempt succeeded. This means that the file wasn't already locked, and that Harry had the latest version of the file.
If Harry's working copy of the file had been out of date, the repository would have rejected the request, forcing Harry to svn up-

125bversion does not currently allow locks on directories.

76

Advanced Topics

date and reattempt the locking command. The locking command would also have failed if the file had aready been locked by
someone else.

As you can see, the svn lock command prints confirmation of the successful lock. At this point, the fact that the file is locked be-
comes apparent in the output of the svn status and svn info reporting subcommands.

$ svn status
K banana.j pg

$ svn info banana.jpg

Pat h: banana. j pg

Narme: banana.] pg

Wor ki ng Copy Root Path: /home/ harry/ project

URL: http://svn.exanpl e.conirepos/ proj ect/banana. | pg
Repository Root: http://svn. exanpl e.confrepos/ project
Repository UUI D: edb2f 264- 5ef 2- 0310- a47a- 87b0cel7a8ec

Revi si on: 2198

Node Kind: file

Schedul e: nor mal

Last Changed Aut hor: frank

Last Changed Rev: 1950

Last Changed Date: 2006-03-15 12:43:04 -0600 (Wed, 15 Mar 2006)
Text Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Properties Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Checksum 3b110d3b10638f 5d1f 4f eOf 436a5a2a5

Lock Token: opaquel ockt oken: OcOf 600b- 88f 9- 0310- 9e48- 355b44d4a58e
Lock Omer: harry

Lock Created: 2006-06-14 17:20:31 -0500 (Wed, 14 Jun 2006)

Lock Comment (1 line):

Editing file for tonorrow s rel ease.

$

The fact that the svn info command, which does not contact the repository when run against working copy paths, can display the
lock token reveals an important piece of information about those tokens: they are cached in the working copy. The presence of the
lock token is critical. It gives the working copy authorization to make use of the lock later on. Also, the svn status command
shows a K next to the file (short for locK ed), indicating that the lock token is present.

Regarding Lock Tokens

A lock token isn't an authentication token, so much as an authorization token. The token isn't a protected secret. In fact, a
lock's unique token is discoverable by anyonewho runssvn i nf o URL. A lock token is specia only when it livesinside a
working copy. It's proof that the lock was created in that particular working copy, and not somewhere else by some other cli-
ent. Merely authenticating as the lock owner isn't enough to prevent accidents.

For example, suppose you lock a file using a computer at your office, but leave work for the day before you finish your
changesto that file. It should not be possible to accidentally commit changes to that same file from your home computer |ater
that evening simply because you've authenticated as the lock's owner. In other words, the lock token prevents one piece of
Subversion-related software from undermining the work of another. (In our example, if you realy need to change the file
from an alternative working copy, you would need to break the lock and relock thefile.)

Now that Harry haslocked banana. j pg, Sally is unable to change or delete that file:

$ svn del ete banana.j pg

77

Advanced Topics

D banana. j pg
$ svn commit -m "Delete useless file."
Del eti ng banana. j pg

svn: E175002: Commit failed (details follow):
svn: E175002: Server sent unexpected return value (423 Locked) in response to
DELETE request for '/repos/project/!svn/wk/64bad3a9- 96f 9- 0310- 818a- df 4224ddc

ng/ banana. j pg'

But Harry, after touching up the banana's shade of yellow, is able to commit his changes to the file. That's because he authenticates
as the lock owner and also because his working copy holds the correct lock token:

$ svn status

M K banana. j pg

$ svn commit -m "Make banana nore yel | ow'
Sendi ng banana. j pg

Transmitting file data .

Committed revision 2201.

$ svn status

Notice that after the commit is finished, svn status shows that the lock token is no longer present in the working copy. Thisis the
standard behavior of svn commit—it searches the working copy (or list of targets, if you provide such a list) for local modifica-
tions and sends all the lock tokens it encounters during this walk to the server as part of the commit transaction. After the commit
completes successfully, all of the repository locks that were mentioned are released—even on files that weren't committed. Thisis
meant to discourage users from being sloppy about locking or from holding locks for too long. If Harry haphazardly locks 30 files
in adirectory named i mages because he's unsure of which files he needs to change, yet changes only four of those files, when he
runssvn conmit i mages, the processwill still release all 30 locks.

This behavior of automatically releasing locks can be overridden with the - - no- unl ock option to svn commit. Thisis best used
for those times when you want to commit changes, but still plan to make more changes and thus need to retain existing locks. You
can also make this your default behavior by setting the no- unl ock runtime configuration option (see the section called “ Runtime
Configuration Area’).

Of course, locking afile doesn't oblige one to commit a changeto it. The lock can be released at any time with asimple svn unlock
command:

$ svn unl ock banana.c
' banana. c' unl ocked.

Discovering Locks

When acommit fails due to someone else'slocks, it's fairly easy to learn about them. The easiest way istorunsvn status - u:

$ svn status -u

M 23 bar.c
M 0] 32 raisin.jpg
* 72 foo. h

78

Advanced Topics

St at us agai nst revi sion: 105
$

In this example, Sally can see not only that her copy of f 0o. h isout of date, but also that one of the two modified files she plans
to commit is locked in the repository. The O symbol stands for “Other,” meaning that a lock exists on the file and was created by
somebody else. If she were to attempt a commit, the lock onr ai si n. j pg would prevent it. Sally is left wondering who made the
lock, when, and why. Once again, svn info has the answers:

$ svn info ~raisin.jpg

Pat h: raisin.jpg

Name: raisin.jpg

URL: http://svn.exanpl e.conirepos/project/raisin.jpg
Repository Root: http://svn. exanpl e.con repos/ proj ect
Repository UUI D: edb2f 264- 5ef 2- 0310- a47a- 87b0cel7a8ec

Revi si on: 105

Node Kind: file

Last Changed Author: sally

Last Changed Rev: 32

Last Changed Date: 2006-01-25 12:43:04 -0600 (Sun, 25 Jan 2006)
Lock Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b
Lock Omer: harry

Lock Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)

Lock Coment (1 line):

gbed to make a quick tweak to this inmage

Just as you can use svn info to examine objects in the working copy, you can also use it to examine objects in the repository. If the
main argument to svn info isaworking copy path, then all of the working copy's cached information is displayed; any mention of a
lock means that the working copy is holding a lock token (if afile islocked by another user or in another working copy, svn info
on aworking copy path will show no lock information at all). If the main argument to svn info is a URL, the information reflects
the latest version of an object in the repository, and any mention of alock describes the current lock on the object.

So in this particular example, Sally can see that Harry locked the file on February 16 to “make a quick tweak.” It being June, she
suspects that he probably forgot all about the lock. She might phone Harry to complain and ask him to release the lock. If he's un-
available, she might try to forcibly break the lock herself or ask an administrator to do so.

Breaking and Stealing Locks

A repository lock isn't sacred—in Subversion's default configuration state, locks can be released not only by the person who cre-
ated them, but by anyone. When somebody other than the original lock creator destroys a lock, we refer to this as breaking the
lock.

From the administrator's chair, it's simple to break locks. The svnlook and svnadmin programs have the ability to display and re-
move locks directly from the repository. (For more information about these tools, see the section called “An Administrator's
Toolkit”.)

$ svnadm n | sl ocks /var/svn/repos

Pat h: /project?2/imges/banana. | pg

UUI D Token: opaquel ockt oken: c32b4d88- e8f b- 2310- abb3- 153ff 1236923
Owner: frank

Created: 2006-06-15 13:29:18 -0500 (Thu, 15 Jun 2006)

Expi res:

79

Advanced Topics

Comment (1 line):
Still inproving the yellow col or.

Path: /project/raisin.jpg
UUI D Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b

Omnner: harry
Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)
Expi res:

Comment (1 line):
Need to nake a quick tweak to this imge.

$ svnadm n rm ocks /var/svn/repos /project/raisin.jpg
Removed | ock on '/project/raisin.jpg' .

The more interesting option is to allow users to break each other's locks over the network. To do this, Sally simply needs to pass
the - - f or ce to the svn unlock command:

$ svn status -u

M 23 bar. c

M 0] 32 raisin.jpg
* 72 foo.h

St at us agai nst revi sion: 105

$ svn unlock raisin.jpg

svn: E195013: 'raisin.jpg" is not |locked in this working copy

$ svn info raisin.jpg | grep URL

URL: http://svn.exanpl e.conlrepos/project/raisin.jpg

$ svn unl ock http://svn. exanpl e. conl repos/ project/raisin.jpg

svn: warning: WL60039: Unlock failed on 'raisin.jpg" (403 Forbi dden)
$ svn unlock --force http://svn. exanpl e. conf repos/ proj ect/raisin.jpg
éraisin.jpg‘ unl ocked.

Now, Saly'sinitial attempt to unlock failed because she ran svn unlock directly on her working copy of the file, and no lock token
was present. To remove the lock directly from the repository, she needs to pass a URL to svn unlock. Her first attempt to unlock
the URL fails, because she can't authenticate as the lock owner (nor does she have the lock token). But when she passes - - f or ce,
the authentication and authorization requirements are ignored, and the remote lock is broken.

Simply breaking alock may not be enough. In the running example, Sally may not only want to break Harry's long-forgotten lock,
but relock the file for her own use. She can accomplish this by using svn unlock with - - f or ce and then svn lock back-to-back,
but there's a small chance that somebody else might lock the file between the two commands. The simpler thing to do isto steal the
lock, which involves breaking and relocking the file al in one atomic step. To do this, Sally passes the - - f or ce option to svn
lock:

$ svn lock raisin.jpg

svn: warning: WL60035: Path '/project/raisin.jpg is already |ocked by user 'h
arry' in filesystem'/var/svn/repos/db'

$ svn lock --force raisin.jpg

éraisin.jpg‘ | ocked by user 'sally'.

In any case, whether the lock is broken or stolen, Harry may be in for a surprise. Harry's working copy still contains the original

80

Advanced Topics

lock token, but that lock no longer exists. The lock token is said to be defunct. The lock represented by the lock token has either
been broken (no longer in the repository) or stolen (replaced with a different lock). Either way, Harry can see this by asking svn
status to contact the repository:

$ svn status
K raisin.jpg
$ svn status -u
B 32 raisin.jpg
St at us agai nst revi sion: 10
$ svn update
Updating '."':
B raisin.jpg
Updated to revision 105.
% svn status

5

If the repository lock was broken, then svn st at us - - show updat es (- u) displays a B (Broken) symbol next to the file. If
anew lock existsin place of the old one, then a T (sTolen) symbol is shown. Finally, svn update notices any defunct lock tokens
and removes them from the working copy.

Locking Policies

Different systems have different notions of how strict alock should be. Some folks argue that locks must be strictly enforced
at all costs, releasable only by the original creator or administrator. They argue that if anyone can break alock, chaos runs
rampant and the whole point of locking is defeated. The other side argues that locks are first and foremost a communication
tool. If users are constantly breaking each other's locks, it represents a cultural failure within the team and the problem falls
outside the scope of software enforcement.

Subversion defaults to the “softer” approach, but still allows administrators to create stricter enforcement policies through
the use of hook scripts. In particular, the pr e-1 ock and pr e- unl ock hooks alow administrators to decide when lock
creation and lock releases are allowed to happen. Depending on whether a lock already exists, these two hooks can decide
whether to allow a certain user to break or steal alock. The post -1 ock and post - unl ock hooks are also available, and
can be used to send email after locking actions. To learn more about repository hooks, see the section called “Implementing
Repository Hooks”.

Lock Communication

We've seen how svn lock and svn unlock can be used to create, release, break, and steal locks. This satisfies the goal of serializing
commit access to afile. But what about the larger problem of preventing wasted time?

For example, suppose Harry locks an image file and then begins editing it. Meanwhile, miles away, Sally wants to do the same
thing. She doesn't think torunsvn st at us - u, so she has no idea that Harry has already locked the file. She spends hours edit-
ing the file, and when she tries to commit her change, she discovers that either the file is locked or that she's out of date. Regard-
less, her changes aren't mergeable with Harry's. One of these two people has to throw away his or her work, and a lot of time has
been wasted.

Subversion's solution to this problem is to provide a mechanism to remind users that a file ought to be locked before the editing be-
gins. The mechanism is a special property: svn: needs- | ock. If that property is attached to afile (regardless of its value, which
isirrelevant), Subversion will try to use filesystem-level permissions to make the file read-only—unless, of course, the user has ex-
plicitly locked the file. When alock token is present (as a result of using svn lock), the file becomes read/write. When the lock is
released, the file becomes read-only again.

The theory, then, isthat if the image file has this property attached, Sally would immediately notice something is strange when she

81

Advanced Topics

opens the file for editing: many applications alert users immediately when a read-only file is opened for editing, and nearly all
would prevent her from saving changes to the file. This reminds her to lock the file before editing, whereby she discovers the
preexisting lock:

$ /usr/local/bin/ginp raisin.jpg

ginp: error: file is read-only!

$1s -1 raisin.jpg

-r--r--r-- 1sally sally 215589 Jun 8 19:23 raisin.jpg

$ svn lock raisin.jpg

svn: warni ng: WL60035: Path '/project/raisin.jpg" is already |ocked by user 'h
arry' in filesystem'/var/svn/repos/db'

$ svn info http://svn.exanpl e.com repos/project/raisin.jpg | grep Lock
Lock Token: opaquel ockt oken: f c2b4dee- 98f 9- 0310- abf 3- 653f f 3226e6b

Lock Omer: harry

Lock Created: 2006-06-08 07:29:18 -0500 (Thu, 08 June 2006)

Lock Comment (1 line):

ghking sonme tweaks. Locking for the next two hours.

Users and administrators alike are encouraged to attach the svn: needs- | ock property to any file that cannot be
_/J contextually merged. This is the primary technique for encouraging good locking habits and preventing wasted effort.

Note that this property is a communication tool that works independently from the locking system. In other words, any file can be
locked, whether or not this property is present. And conversely, the presence of this property doesn't make the repository require a
lock when committing.

Unfortunately, the system isn't flawless. It's possible that even when a file has the property, the read-only reminder won't always
work. Sometimes applications misbehave and “hijack” the read-only file, silently allowing users to edit and save the file anyway.
There's not much that Subversion can do in this situation—at the end of the day, there's smply no substitution for good interper-
sonal communication.*®

Externals Definitions

Sometimesit is useful to construct aworking copy that is made out of a number of different checkouts. For example, you may want
different subdirectories to come from different locations in a repository or perhaps from different repositories altogether. You
could certainly set up such a scenario by hand—using svn checkout to create the sort of nested working copy structure you are try-
ing to achieve. But if this layout is important for everyone who uses your repository, every other user will need to perform the
same checkout operations that you did.

Fortunately, Subversion provides support for externals definitions. An externals definition is a mapping of alocal directory to the
URL—and ideally a particular revision—of a versioned directory. In Subversion, you declare externals definitions in groups using
thesvn: ext er nal s property. You can create or modify this property using svn propset or svn propedit (see the section called
“Manipulating Properties”). It can be set on any versioned directory, and its value describes both the external repository location
and the client-side directory to which that location should be checked out.

The convenience of the svn: ext er nal s property is that once it is set on a versioned directory, everyone who checks out a
working copy with that directory also gets the benefit of the externals definition. In other words, once one person has made the ef-
fort to define the nested working copy structure, no one else has to bother—Subversion will, after checking out the original work-
ing copy, automatically also check out the external working copies.

13Except, perhaps, aclassic Vulcan mind-meld.

82

Advanced Topics

The relative target subdirectories of externals definitions must not already exist on your or other users sys
tems—Subversion will create them when it checks out the external working copy.

You aso get in the externals definition design all the regular benefits of Subversion properties. The definitions are versioned. If
you need to change an externals definition, you can do so using the regular property modification subcommands. When you com-
mit a change to the svn: ext er nal s property, Subversion will synchronize the checked-out items against the changed externals
definition when you next run svn updat e. The same thing will happen when others update their working copies and receive
your changes to the externals definition.

Becausethesvn: ext er nal s property has a multiline value, we strongly recommend that you use svn propedit in-
_') stead of svn propset.

Subversion releases prior to 1.5 honor an externals definition format that is a multiline table of subdirectories (relative to the ver-
sioned directory on which the property is set), optional revision flags, and fully qualified, absolute Subversion repository URLS.
An example of this might look as follows:

ttp://svn. exanpl e. conf r epos/ sounds
ttp://svn. exanpl e. cont ski nproj
ttp://svn. exanpl e. cont ski n- naker

rd- party/ sounds h
rd-party/skins -r148 h

$ svn propget svn:externals calc
t hi
t hi
third-party/skins/toolkit -r21 h

h
h
h

When someone checks out aworking copy of the cal ¢ directory referred to in the previous example, Subversion also continues to
check out the items found in its externals definition.

$ svn checkout http://svn.exanpl e.com repos/calc
A cal c

A cal c/ Makefile

A calc/integer.c

A cal c/button.c

Checked out revision 148.

Fetching external iteminto cal c/third-party/sounds
A cal ¢/t hird-party/sounds/ di ng. ogg

A cal ¢/t hird-party/sounds/ dong. ogg

A cal ¢/ third-party/sounds/cl ang. ogg

A cal ¢/t hird-party/ sounds/ bang. ogg
A cal ¢/ third-party/sounds/twang. ogg
Checked out revision 14.

Fetching external iteminto cal c/third-party/skins

As of Subversion 1.5, though, a new format of the svn: ext er nal s property is supported. Externals definitions are still multil-
ine, but the order and format of the various pieces of information have changed. The new syntax more closely mimics the order of
arguments you might pass to svn checkout: the optional revision flags come first, then the external Subversion repository URL,
and finally the relative local subdirectory. Notice, though, that this time we didn't say “fully qualified, absolute Subversion reposit-
ory URLs.” That's because the new format supports relative URLs and URL s that carry peg revisions. The previous example of an
externals definition might, in Subversion 1.5, look like the following:

83

Advanced Topics

$ svn propget svn:externals calc

http://svn. exanpl e. conf repos/ sounds third-party/sounds
-r148 http://svn. exanpl e. com ski nproj third-party/skins
-r21 http://svn. exanpl e. coni ski n- naker third-party/skins/tool kit

Or, making use of the peg revision syntax (which we describe in detail in the section called “Peg and Operative Revisions’), it
might appear as.

vn propget svn:externals calc
p: //svn. exanpl e. coni repos/ sounds third-party/sounds
p://
p://

svn. exanpl e. coni ski nproj @48 third-party/skins
svn. exanpl e. com ski n- maker @1 third-party/skins/tool kit

You should seriously consider using explicit revision numbers in al of your externals definitions. Doing so means

_') that you get to decide when to pull down a different snapshot of external information, and exactly which snapshot to
pull. Besides avoiding the surprise of getting changes to third-party repositories that you might not have any control
over, using explicit revision numbers also means that as you backdate your working copy to a previous revision, your
externals definitions will also revert to the way they looked in that previous revision, which in turn means that the ex-
ternal working copies will be updated to match the way they looked back when your repository was at that previous
revision. For software projects, this could be the difference between a successful and a failed build of an older snap-
shot of your complex codebase.

For most repositories, these three ways of formatting the externals definitions have the same ultimate effect. They al bring the
same benefits. Unfortunately, they all bring the same annoyances, too. Since the definitions shown use absolute URLS, moving or
copying a directory to which they are attached will not affect what gets checked out as an externa (though the relative local target
subdirectory will, of course, move with the renamed directory). This can be confusing—even frustrating—in certain situations. For
example, say you have atop-level directory named ny - pr oj ect , and you've created an externals definition on one of its subdir-
ectories (my-project/sonme-dir) that tracks the latest revision of another of its subdirectories (ny-

proj ect/external -dir).

$ svn checkout http://svn.exanpl e.com projects .
A nmy- pr oj ect

A nmy-proj ect/sone-dir

A nmy-proj ect/external -dir

Fet chi ng external iteminto 'ny-project/sone-dir/subdir’
Checked out external at revision 11.

Checked out revision 11.
$ svn propget svn:externals my-project/sone-dir
subdir http://svn. exanpl e.conf projects/ my-project/external-dir

$

Now you use svnh move to rename the my- pr oj ect directory. At this point, your externals definition will still refer to a path un-
der the my- pr oj ect directory, even though that directory no longer exists.

Advanced Topics

$ svn nmove -q ny-project renaned-project

$ svn conmit -m "Renane ny-project to renaned-project."”
Del eti ng nmy- pr oj ect

Addi ng r enamed- pr oj ect

Conmitted revision 12.
$ svn update
Updating '.":

svn: warni ng: W200000: Error handling externals definition for 'renaned-projec
t/some-dir/subdir':

svn: warning: WL70000: URL 'http://svn.exanpl e.coni projects/ ny-project/externa
I-dir' at revision 12 doesn't exist

At revision 12.

givn: E205011: Failure occurred processing one or nore externals definitions

Also, absolute URL s can cause problems with repositories that are available via multiple URL schemes. For example, if your Sub-
version server is configured to allow everyone to check out the repository over ht t p: // or htt ps://, but only alow commits
tocomeinviahtt ps://,you have an interesting problem on your hands. If your externals definitions usethe ht t p: // form of
the repository URLS, you won't be able to commit anything from the working copies created by those externals. On the other hand,
if they usetheht t ps:// form of the URLS, anyone who might be checking out viaht t p: // because his client doesn't support
htt ps:// will be unable to fetch the external items. Be aware, too, that if you need to reparent your working copy (using svn re-
locate), externals definitions will not also be reparented.

Subversion 1.5 takes a huge step in relieving these frustrations. As mentioned earlier, the URLs used in the new externals defini-
tion format can be relative, and Subversion provides syntax magic for specifying multiple flavors of URL relativity.

A
Relative to the URL of the directory on whichthesvn: ext er nal s property is set

~
Relative to the root of the repository in which the svn: ext er nal s property is versioned

/1
Relative to the scheme of the URL of the directory on which thesvn: ext er nal s property is set

Relative to the root URL of the server on which thesvn: ext er nal s property isversioned

A .. | REPO- NAMVE
Relative to a sibling repository beneath the same SVNParent Pat h location as the repository in which the
svn: ext er nal s isdefined.

So, looking a fourth time at our previous externals definition example, and making use of the new absolute URL syntax in various
ways, we might now see:

$ svn propget svn:externals calc

Al sounds third-party/sounds

/ ski nproj @48 third-party/skins

{$/ svn. exanpl e. coni ski n- maker @1 third-party/skins/tool kit

85

Advanced Topics

Subversion 1.6 brought two more improvements to externals definitions. First, it added a quoting and escape mechanism to the
syntax so that the path of the external working copy may contain whitespace. This was previously problematic, of course, because
whitespace is used to delimit the fields in an externals definition. Now you need only wrap such a path specification in double-
guote (") characters or escape the problematic characters in the path with a backslash (\) character. Of course, if you have spaces
in the URL portion of the external definition, you should use the standard URI-encoding mechanism to represent those.

$ svn propget svn:externals paint

http://svn.thirdparty. conf repos/ My%20Proj ect "My Project"
http://

$

svn. thirdparty. conlrepos/ %22Quot es¥%20Too%22 \" Quot es\ Too\"

Subversion 1.6 also introduced support for external definitions for files. File externals are configured just like externals for direct-
ories and appear as aversioned file in the working copy.

For example, let's say you had the file/ t r unk/ bi keshed/ bl ue. ht m in your repository, and you wanted this file, as it ap-
peared in revision 40, to appear in your working copy of / t r unk/ ww/ asgreen. htm .

The external s definition required to achieve this should ook familiar by now:

$ svn propget svn:externals www

Al trunk/ bi keshed/ bl ue. ht Ml @0 green. htm
$ svn update

Updating '."':

Fetching external iteminto ' ww
E ww/ gr een. ht m
Updat ed external to revision 40.

Update to revision 103.
$ svn status

X ww/ green. ht n
$

As you can see in the previous output, Subversion denotes file externals with the letter E when they are fetched into the working
copy, and with the letter X when showing the working copy status.

While directory externals can place the external directory at any depth, and any missing intermediate directories will
be created, file externals must be placed into aworking copy that is already checked out.

When examining the file external with svn info, you can see the URL and revision the external is coming from:

$ svn info ww green. htm

Pat h: www/ green. htm

Name: green. htn

Wor ki ng Copy Root Path: /hone/harry/ projects/ ny-project

URL: http://svn.exanpl e.coni projects/ nmy-project/trunk/bi keshed/ bl ue. ht n
Repository Root: http://svn. exanpl e.cont projects/ny-project

Repository UUI D: b2a368dc- 7564- 11de- bb2b- 113435390e17

Revi si on: 40

Node kind: file

86

Advanced Topics

Schedul e: nor nal

Last Changed Author: harry

Last Changed Rev: 40

Last Changed Date: 2009-07-20 20:38:20 +0100 (Mon, 20 Jul 2009)
Text Last Updated: 2009-07-20 23:22:36 +0100 (Mon, 20 Jul 2009)
ghecksum 01a58b04617b92492d99662c3837b33b

Because file externals appear in the working copy as versioned files, they can be modified and even committed if they reference a
file at the HEAD revision. The committed changes will then appear in the externa as well as the file referenced by the external.
However, in our example, we pinned the external to an older revision, so attempting to commit the external fails:

$ svn status

M X ww/ green. htm

$ svn commit -m "change the color" ww/ green. htmn

Sendi ng ww/ gr een. ht m

svn: E155011: Commit failed (details follow):

;vn: E155011: File '/trunk/bi keshed/blue.htm' is out of date

Keep thisin mind when defining file externals. If you need the external to refer to a certain revision of afile you will not be able to
modify the external. If you want to be able to modify the external, you cannot specify a revision other than the HEAD revision,
which isimplied if no revision is specified.

Unfortunately, the support which exists for externals definitions in Subversion remains less than ideal. Both file and directory ex-
ternals have shortcomings. For either type of external, the local subdirectory part of the definition cannot contain . . parent direct-
ory indicators (such as . . /. ./ ski ns/ myski n). File externals cannot refer to files from other repositories. A file external's
URL must aways be in the same repository as the URL that the file external will be inserted into. Also, file externals cannot be
moved or deleted. Thesvn: ext er nal s property must be modified instead. However, file externals can be copied.

Perhaps most disappointingly, the working copies created via the externals definition support are still disconnected from the
primary working copy (on whose versioned directories the svn: ext er nal s property was actually set). And Subversion still
truly operates only on nondisjoint working copies. So, for example, if you want to commit changes that you've made in one or
more of those external working copies, you must run svn commit explicitly on those working copies—committing on the primary
working copy will not recurse into any external ones.

We've aready mentioned some of the additional shortcomings of the old svn: ext er nal s format and how the newer Subversion
1.5 format improves upon it. But be careful when making use of the new format that you don't inadvertently introduce new prob-
lems. For example, while the latest clients will continue to recognize and support the original externals definition format, pre-1.5
clients will not be able to correctly parse the new format. If you change al your externals definitions to the newer format, you ef-
fectively force everyone who uses those externals to upgrade their Subversion clients to a version that can parse them. Also, be
careful to avoid naively relocating the - r NNN portion of the definition—the older format uses that revision as a peg revision, but
the newer format uses it as an operative revision (with a peg revision of HEAD unless otherwise specified; see the section called
“Peg and Operative Revisions’ for afull explanation of the distinction here).

External working copies are still completely self-sufficient working copies. Y ou can operate directly on them as you
would any other working copy. This can be a handy feature, allowing you to examine an external working copy inde-
pendently of any primary working copy whose svn: ext er nal s property caused its instantiation. Be careful,
though, that you don't inadvertently modify your external working copy in subtle ways that cause problems. For ex-
ample, while an externals definition might specify that the external working copy should be held at a particular revi-
sion number, if you run svn update directly on the external working copy, Subversion will oblige, and now your ex-
ternal working copy is out of sync with its declaration in the primary working copy. Using svn switch to directly

87

Advanced Topics

switch the external working copy (or some portion thereof) to another URL could cause similar problems if the con-
tents of the primary working copy are expecting particular contents in the external content.

Besides the svn checkout, svn update, svn switch, and svn export commands which actually manage the digjoint (or disconnec-
ted) subdirectories into which externals are checked out, the svn status command also recognizes externals definitions. It displays
a status code of X for the digoint external subdirectories, and then recurses into those subdirectories to display the status of the ex-
ternal items themselves. You can pass the - - i gnor e- ext er nal s option to any of these subcommands to disable externals
definition processing.

Changelists

It is commonplace for a developer to find himself working at any given time on multiple different, distinct changes to a particular
bit of source code. Thisisn't necessarily due to poor planning or some form of digital masochism. A software engineer often spots
bugs in his peripheral vision while working on some nearby chunk of source code. Or perhaps he's halfway through some large
change when he realizes the solution he's working on is best committed as several smaller logical units. Often, these logical units
aren't nicely contained in some module, safely separated from other changes. The units might overlap, modifying different filesin
the same module, or even modifying different linesin the samefile.

Developers can employ various work methodologies to keep these logical changes organized. Some use separate working copies of
the same repository to hold each individual change in progress. Others might choose to create short-lived feature branches in the
repository and use a single working copy that is constantly switched to point to one such branch or another. Still others use diff and
patch tools to back up and restore uncommitted changes to and from patch files associated with each change. Each of these meth-
ods has its pros and cons, and to a large degree, the details of the changes being made heavily influence the methodology used to
distinguish them.

Subversion provides a changelists feature that adds yet another method to the mix. Changelists are basically arbitrary labels
(currently at most one per file) applied to working copy files for the express purpose of associating multiple files together. Users of
many of Google's software offerings are familiar with this concept aready. For example, Gmail [http://mail.google.com/] doesn't
provide the traditional folders-based email organization mechanism. In Gmail, you apply arbitrary labels to emails, and multiple
emails can be said to be part of the same group if they happen to share a particular label. Viewing only a group of similarly labeled
emails then becomes a simple user interface trick. Many other Web 2.0 sites have similar mechanisms—consider the “tags’ used
by sites such as YouTube [http://www.youtube.com/] and Flickr [http://www.flickr.com/], “categories’ applied to blog posts, and
so on. Folks understand today that organization of datais critical, but that how that datais organized needs to be a flexible concept.
The old files-and-folders paradigm is too rigid for some applications.

Subversion's changelist support allows you to create changelists by applying labels to files you want to be associated with that
changelist, remove those labels, and limit the scope of the files on which its subcommands operate to only those bearing a particu-
lar [abel. In this section, we'll ook in detail at how to do these things.

Creating and Modifying Changelists

Y ou can create, modify, and delete changelists using the svn changelist command. More accurately, you use this command to set
or unset the changelist association of a particular working copy file. A changelist is effectively created the first time you label afile
with that changelist; it is deleted when you remove that label from the last file that had it. Let's examine a usage scenario that
demonstrates these concepts.

Harry isfixing some bugs in the calculator application's mathematics logic. His work leads him to change a couple of files:

$ svn status

M i nteger.c
M mat hops. ¢
$

88

http://mail.google.com/
http://mail.google.com/
http://www.youtube.com/
http://www.youtube.com/
http://www.flickr.com/
http://www.flickr.com/

Advanced Topics

While testing his bug fix, Harry notices that his changes bring to light a tangentially related bug in the user interface logic found in
but t on. c. Harry decides that he'll go ahead and fix that bug, too, as a separate commit from his math fixes. Now, in a small
working copy with only a handful of files and few logical changes, Harry can probably keep his two logical change groupings
mentally organized without any problem. But today he's going to use Subversion's changelists feature as a special favor to the au-
thors of this book.

Harry first creates a changelist and associates with it the two files he's already changed. He does this by using the svn changelist
command to assign the same arbitrary changelist name to those files:

$ svn changelist math-fixes integer.c mathops.c
A [math-fixes] integer.c

A [mat h-fixes] mathops.c

$ svn status

- Changelist 'math-fixes':
i nteger.c
mat hops. ¢

nZ

Asyou can see, the output of svn status reflects this new grouping.

Harry now sets off to fix the secondary Ul problem. Since he knows which file he'll be changing, he assigns that path to a changel-
ist, too. Unfortunately, Harry carelessly assigns thisthird file to the same changelist as the previous two files:

$ svn changelist math-fixes button.c
A [math-fixes] button.c
$ svn status

--- Changelist 'math-fixes':
button.c

M i nteger.c

Q;/I mat hops. ¢

Fortunately, Harry catches his mistake. At this point, he has two options. He can remove the changelist association from but -
t on. ¢, and then assign a different changelist name:

$ svn changelist --renpbve button.c
D [mat h-fixes] button.c

$ svn changelist ui-fix button.c
é[ui-fix] button.c

Or, he can skip the removal and just assign a new changelist name. In this case, Subversion will first warn Harry that but t on. ¢
is being removed from the first changelist:

$ svn changelist ui-fix button.c
D [math-fixes] button.c

89

Advanced Topics

AJui-fix] button.c
$ svn status

--- Changelist "ui-fix':
button.c

--- Changelist 'math-fixes':
i nteger.c
mat hops. ¢

»nZ

Harry now has two distinct changelists present in his working copy, and svn status will group its output according to these
changelist determinations. Notice that even though Harry hasn't yet modified but t on. c, it till shows up in the output of svn
status as interesting because it has a changelist assignment. Changelists can be added to and removed from files at any time, re-
gardless of whether they contain local modifications.

Harry now fixes the user interface problemin but t on. c.

$ svn status

--- Changelist "ui-fix':

M button.c

--- Changelist 'math-fixes':
M i nteger.c

M mat hops. ¢

$

Changelists As Operation Filters

The visual grouping that Harry sees in the output of svn status as shown in our previous section is nice, but not entirely useful. The
status command is but one of many operations that he might wish to perform on his working copy. Fortunately, many of Subver-
sion's other operations understand how to operate on changelists viathe use of the - - changel i st option.

When provided with a- - changel i st option, Subversion commands will limit the scope of their operation to only those filesto
which a particular changelist name is assigned. If Harry now wants to see the actual changes he's made to the files in his mat h-
fi xes changelist, he could explicitly list only the files that make up that changelist on the svn diff command line.

$ svn diff integer.c mathops.c
I ndex: integer.c

--- integer.c (revision 1157)
+++ integer.c (working copy)

--- mathops.c (revision 1157)
+++ mat hops. ¢ (wor ki ng copy)

90

Advanced Topics

That works okay for afew files, but what if Harry's change touched 20 or 30 files? That would be an annoyingly long list of expli-
citly named files. Now that he's using changelists, though, Harry can avoid explicitly listing the set of filesin his changelist from
now on, and instead provide just the changelist name:

$ svn diff --changelist math-fixes
I ndex: integer.c

--- integer.c (revision 1157)
+++ integer.c (working copy)

| ndex: mat hops. c

--- mathops.c (revision 1157)
+++ mat hops. ¢ (wor ki ng copy)

And when it's time to commit, Harry can again use the - - changel i st option to limit the scope of the commit to filesin a cer-
tain changelist. He might commit his user interface fix by doing the following:

$ svn commit -m"Fix a U bug found while working on math logic." \
--changelist ui-fix

Sendi ng button.c

Transmitting file data .

gorrm'tted revision 1158.

In fact, the svn commit command provides a second changelists-related option: - - keep- changel i st s. Normally, changelist
assignments are removed from files after they are committed. But if - - keep- changel i st s is provided, Subversion will leave
the changelist assignment on the committed (and now unmodified) files. In any case, committing files assigned to one changelist
leaves other changelists undisturbed.

$ svn status

--- Changelist 'math-fixes':
i nteger.c
mat hops. ¢

n

eration. For example, on a commit operation specified assvn commit /path/to/ dir, thetarget is the direct-
ory / pat h/ t o/ di r and its children (to infinite depth). If you then add a changelist specifier to that command, only
those files in and under / pat h/ t o/ di r that are assigned that changelist name will be considered as targets of the
commit—the commit will not include files located elsewhere (such asin/ pat h/ t o/ anot her - di r), regardless of
their changelist assignment, even if they are part of the same working copy as the operation's target(s).

<> The - - changel i st option acts only as afilter for Subversion command targets, and will not add targets to an op-

Even the svn changelist command acceptsthe - - changel i st option. This allows you to quickly and easily rename or remove a
changelist:

91

Advanced Topics

vn changel i st mat h-bugs --changelist math-fixes --depth infinity .
h-fixes] integer.c

h- bugs] integer.c

h-fi xes] mathops. c

h- bugs] mat hops. c

vn changelist --renove --changelist math-bugs --depth infinity .
mat h- bugs] integer.c

mat h- bugs] nat hops. c

ma
m
m
ma

S
[
[
[
[
S
[
[

LoOON>0>0O%

Finally, you can specify multiple instances of the - - changel i st option on a single command line. Doing so limits the operation
you are performing to files found in any of the specified changesets.

Changelist Limitations

Subversion's changelist feature is a handy tool for grouping working copy files, but it does have a few limitations. Changelists are
artifacts of a particular working copy, which means that changelist assignments cannot be propagated to the repository or otherwise
shared with other users. Changelists can be assigned only to files—Subversion doesn't currently support the use of changelists with
directories. Finally, you can have at most one changelist assignment on a given working copy file. Here is where the blog post cat-
egory and photo service tag analogies break down—if you find yourself needing to assign a file to multiple changelists, you're out
of luck.

Network Model

At some point, you're going to need to understand how your Subversion client communicates with its server. Subversion's network-
ing layer is abstracted, meaning that Subversion clients exhibit the same general behaviors no matter what sort of server they are
operating against. Whether speaking the HTTP protocol (ht t p: / /) with the Apache HTTP Server or speaking the custom Sub-
version protocol (svn: / /) with svnserve, the basic network model is the same. In this section, we'll explain the basics of that net-
work model, including how Subversion manages authentication and authorization matters.

Requests and Responses

The Subversion client spends most of its time managing working copies. When it needs information from a remote repository,
however, it makes a network request, and the server responds with an appropriate answer. The details of the network protocol are
hidden from the user—the client attempts to access a URL, and depending on the URL scheme, a particular protocol is used to con-
tact the server (see the section called “ Addressing the Repository™).

oj Runsvn --versi on to seewhich URL schemes and protocols the client knows how to use.

When the server process receives a client request, it often demands that the client identify itself. It issues an authentication chal-
lenge to the client, and the client responds by providing credentials back to the server. Once authentication is complete, the server
responds with the original information that the client asked for. Notice that this system is different from systems such as CVS,
where the client preemptively offers credentials (“logs in”) to the server before ever making a request. In Subversion, the server
“pulls’ credentials by challenging the client at the appropriate moment, rather than the client “pushing” them. This makes certain
operations more elegant. For example, if a server is configured to alow anyone in the world to read a repository, the server will
never issue an authentication challenge when a client attempts to svn checkout.

If the particular network requests issued by the client result in a new revision being created in the repository (e.g., svn commit),
Subversion uses the authenticated username associated with those requests as the author of the revision. That is, the authenticated
user's name is stored as the value of the svn: aut hor property on the new revision (see the section called “ Subversion Proper-
ties” in Chapter 9, Subversion Complete Reference). If the client was not authenticated (i.e., if the server never issued an authentic-

92

Advanced Topics

ation challenge), therevision'ssvn: aut hor property is empty.

Client Credentials

Many Subversion servers are configured to require authentication. Sometimes anonymous read operations are allowed, while write
operations must be authenticated. In other cases, reads and writes alike require authentication. Subversion's different server options
understand different authentication protocols, but from the user's point of view, authentication typically boils down to usernames
and passwords. Subversion clients offer several different ways to retrieve and store a user's authentication credentials, from inter-
active prompting for usernames and passwords to encrypted and non-encrypted on-disk data caches.

The security-conscious reader will suspect immediately that there is reason for concern here. “Caching passwords on disk? That's
terrible! Y ou should never do that!” Don't worry—it's not as bad as it sounds. The following sections discuss the various types of
credential caches that Subversion uses, when it uses them, and how to disable that functionality in whole or in part.

Caching credentials

Subversion offers a remedy for the annoyance caused when users are forced to type their usernames and passwords over and over
again. By default, whenever the command-line client successfully responds to a server's authentication challenge, credentials are
cached on disk and keyed on a combination of the server's hostname, port, and authentication realm. This cache will then be auto-
matically consulted in the future, avoiding the need for the user to re-type his or her authentication credentials. If seemingly suit-
able credentials are not present in the cache, or if the cached credentials ultimately fail to authenticate, the client will, by default,
fall back to prompting the user for the necessary information.

The Subversion developers recognize that on-disk caches of authentication credentials can be a security risk. To offset this, Sub-
version works with available mechanisms provided by the operating system and environment to try to minimize the risk of leaking
thisinformation.

» On Windows, the Subversion client stores passwords in the Y%APPDATA% Subver si on/ aut h/ directory. On Windows 2000
and later, the standard Windows cryptography services are used to encrypt the password on disk. Because the encryption key is
managed by Windows and istied to the user's own login credentials, only the user can decrypt the cached password. (Note that if
the user's Windows account password is reset by an administrator, all of the cached passwords become undecipherable. The Sub-
version client will behave as though they don't exist, prompting for passwords when required.)

» Similarly, on Mac OS X, the Subversion client stores al repository passwords in the login keyring (managed by the Keychain
service), which is protected by the user's account password. User preference settings can impose additional policies, such as re-
quiring that the user's account password be entered each time the Subversion password is used.

* For other Unix-like operating systems, no single standard “keychain” service exists. However, the Subversion client knows how
to store passwords securely using the “GNOME Keyring” and “KDE Wallet” services. Also, before storing unencrypted pass-
wordsinthe ~/ . subver si on/ aut h/ caching area, the Subversion client will ask the user for permission to do so. Note that
the aut h/ caching area is still permission-protected so that only the user (owner) can read data from it, not the world at large.
The operating system's own file permissions protect the passwords from other non-administrative users on the same system,
provided they have no direct physical access to the storage media of the home directory, or backups thereof.

Of course, for the truly paranoid, none of these mechanisms meets the test of perfection. So for those folks willing to sacrifice con-
venience for the ultimate in security, Subversion provides various ways of disabling its credentials caching system altogether.

Disabling password caching
When you perform a Subversion operation that requires you to authenticate, by default Subversion tries to cache your authentica-

tion credentials on disk in encrypted form. On some systems, Subversion may be unable to encrypt your authentication data. In
those situations, Subversion will ask whether you want to cache your credentialsto disk in plaintext:

$ svn checkout https://host.exanpl e.com 443/ svn/ private-repo

93

Advanced Topics

ATTENTI ON!' Your password for authentication realm
<ht t ps:// host . exanpl e. com 443> Subver si on Repository

can only be stored to di sk unencrypted! You are advised to configure
your system so that Subversion can store passwords encrypted, if
possi ble. See the docunentation for details.

You can avoid future appearances of this warning by setting the val ue
of the 'store-plaintext-passwords' option to either 'yes' or 'no' in
"/tnpl/servers'.

Store password unencrypted (yes/no)?

If you want the convenience of not having to continually reenter your password for future operations, you can answer yes to this
prompt. If you're concerned about caching your Subversion passwords in plaintext and do not want to be asked about it again and
again, you can disable caching of plaintext passwords either permanently, or on a server-per-server basis.

When considering how to use Subversion's password caching system, you'll want to consult any governing policies
that are in place for your client computer—many companies have strict rules about the ways that their employees' au-
thentication credentials should be stored.

To permanently disable caching of passwords in plaintext, add the line st or e- pl ai nt ext - passwords = no to the
[gl obal] sectionintheser ver s configuration file on the local machine. To disable plaintext password caching for a particular
server, use the same setting in the appropriate group section in the servers configuration file. (See the section called
“Configuration Options’ in Chapter 7, Customizing Your Subversion Experience for details.)

To disable password caching entirely for any single Subversion command-line operation, pass the - - no- aut h- cache option to
that command line. To permanently disable caching entirely, add the line st or e- passwords = no to your local machine's
Subversion configuration file.

Removing cached credentials

Sometimes users will want to remove specific credentials from the disk cache. To do this, you need to navigate into the aut h/
area and manually delete the appropriate cache file. Credentials are cached in individual files; if you look inside each file, you will
see keysand values. Thesvn: r eal nst ri ng key describes the particular server realm that the file is associated with:

$ I's ~/.subversion/auth/svn. sinpl e/
5671adf 2865e267db74f 09ba6f 872¢28
3893ed123b39500bca8a0b382839198e
5¢3c22968347b390f 349f f 340196ed39

$ cat ~/.subversion/auth/svn. sinpl e/ 5671adf 2865e267db74f 09ba6f 872c28

K8

user nane
VvV 3

j oe

K8
passwor d
V 4

bl ah

K 15

94

Advanced Topics

svn:real nstring

V 45

<https://svn.domai n.com 443> Joe's repository
END

Once you have located the proper cachefile, just deleteit.

Command-line authentication

All Subversion command-line operations accept the - - user nane and - - passwor d options, which allow you to specify your
username and password, respectively, so that Subversion isn't forced to prompt you for that information. Thisis especially handy if
you need to invoke Subversion from a script and cannot rely on Subversion being able to locate valid cached credentials for you.
These options are also helpful when Subversion has aready cached authentication credentials for you, but you know they aren't the
ones you want it to use. Perhaps several system users share alogin to the system, but each have distinct Subversion identities. Y ou
can omit the - - passwor d option from this pair if you wish Subversion to use only the provided username, but still prompt you
for that username's password.

Authentication wrap-up

One last word about svn's authentication behavior, specifically regarding the - - user nane and - - passwor d options. Many cli-
ent subcommands accept these options, but it is important to understand that using these options does not automatically send cre-
dentials to the server. As discussed earlier, the server “pulls’ credentials from the client when it deems necessary; the client cannot
“push” them at will. If a username and/or password are passed as options, they will be presented to the server only if the server re-
guests them. These options are typically used to authenticate as a different user than Subversion would have chosen by default
(such as your system login name) or when trying to avoid interactive prompting (such as when calling svn from a script).

A common mistake is to misconfigure a server so that it never issues an authentication challenge. When users pass -
/ - user nane and - - passwor d options to the client, they're surprised to see that they're never used; that is, new re-
visions still appear to have been committed anonymously!

Hereisafinal summary that describes how a Subversion client behaves when it receives an authentication challenge.

1. First, the client checks whether the user specified any credentials as command-line options (- - user nane and/or -
- passwor d). If so, the client will try to use those credentials to authenticate against the server.

2. If no command-line credentials were provided, or the provided ones were invalid, the client looks up the server's hostname, port,
and realm in the runtime configuration's aut h/ area, to see whether appropriate credentials are cached there. If so, it attempts
to use those credentials to authenticate.

3. Finally, if the previous mechanisms failed to successfully authenticate the user against the server, the client resorts to interact-
ively prompting the user for valid credentials (unless instructed not to do so viathe - - non-i nt er act i ve option or its cli-
ent-specific equivalents).

If the client successfully authenticates by any of these methods, it will attempt to cache the credentials on disk (unless the user has
disabled this behavior, as mentioned earlier).

Summary

After reading this chapter, you should have a firm grasp on some of Subversion's features that, while perhaps not used every time
you interact with your version control system, are certainly handy to know about. But don't stop here! Read on to the following
chapter, where you'll learn about branches, tags, and merging. Then you'll have nearly full mastery of the Subversion client.

95

Advanced Topics

Though our lawyers won't allow us to promise you anything, this additional knowledge could make you measurably more cool 14

¥No purchase necessary. Certains terms and conditions apply. No guarantee of coolness—implicit or otherwise—exists. Mileage may vary.

96

Chapter 4. Branching and Merging

“#HHHt (It is upon the Trunk that a gentleman works.)”
—Confucius

Branching and merging are fundamental aspects of version control, simple enough to explain conceptually but offering just enough
complexity and nuance to merit their own chapter in this book. Herein, we'll introduce you to the general ideas behind these opera-
tions as well as Subversion's somewhat unique approach to them. If you've not familiarized yourself with Subversion's basic con-
cepts (found in Chapter 1, Fundamental Concepts), we recommmend that you do so before reading this chapter.

What's a Branch?

Suppose it's your job to maintain a document for a division in your company—a handbook of some sort. One day a different divi-
sion asks you for the same handbook, but with afew parts “tweaked” for them, since they do things dlightly differently.

What do you do in this situation? Y ou do the obvious. make a second copy of your document and begin maintaining the two copies
separately. As each department asks you to make small changes, you incorporate them into one copy or the other.

Y ou often want to make the same change to both copies. For example, if you discover a typo in the first copy, it's very likely that
the same typo exists in the second copy. The two documents are almost the same, after all; they differ only in small, specific ways.

This is the basic concept of a branch—namely, a line of development that exists independently of another line, yet till shares a

common history if you look far enough back in time. A branch always begins life as a copy of something, and moves on from
there, generating its own history (see Figure 4.1, “Branches of development”).

Figure 4.1. Branches of development

3rd branch

15t branch

¥

Original line of development

¥

Znd branch

time é}

Subversion has commands to help you maintain parallel branches of your files and directories. It alows you to create branches by
copying your data, and remembers that the copies are related to one ancther. It aso helps you duplicate changes from one branch to
another. Finaly, it can make portions of your working copy reflect different branches so that you can “mix and match” different
lines of development in your daily work.

Using Branches

At this point, you should understand how each commit creates a new state of the filesystem tree (called a“revision”) in the reposit-
ory. If you don't, go back and read about revisionsin the section called “Revisions’.

Let's revisit the example from Chapter 1, Fundamental Concepts. Remember that you and your collaborator, Sally, are sharing a
repository that contains two projects, pai nt and cal c. Notice that in Figure 4.2, “ Starting repository layout”, however, each

97

Branching and Merging

project directory now contains subdirectories named t r unk and br anches. The reason for this will soon become clear.

Figure4.2. Starting repository layout

(]

= alc —_
—
P
[L=
= trunk -
[b=
e
*| branches
= paint I —
—
o W
[
*=| trunk .
[I
o —

*| branches

As before, assume that Sally and you both have working copies of the “calc” project. Specifically, you each have a working copy
of / cal ¢/ t runk. All thefiles for the project are in this subdirectory rather than in/ cal c itself, because your team has decided
that / cal ¢/ t runk iswherethe“main ling” of development is going to take place.

Let's say that you've been given the task of implementing a large software feature. It will take along time to write, and will affect
all the files in the project. The immediate problem is that you don't want to interfere with Sally, who is in the process of fixing
small bugs here and there. She's depending on the fact that the latest version of the project (in/ cal ¢/ t r unk) isaways usable. If
you start committing your changes bit by bit, you'll surely break things for Sally (and other team members as well).

One strategy is to crawl into a hole: you can stop sharing information for a week or two, gutting and reorganizing all the filesin
your private working copy but not committing or updating until you're completely finished with your task. There are a number of
problems with this, though. First, it's not very safe. Should something bad happen to your working copy or computer, you risk los-
ing all your changes. Second, it's not very flexible. Unless you manually replicate your changes across different working copies or
computers, you're stuck trying to make your changes in a single working copy. Similarly, it's difficult to share your work-
in-progress with anyone else. A common software development “best practice” isto alow your peers to review your work as you
go. If nobody sees your intermediate commits, you lose potential feedback and may end up going down the wrong path for weeks
before another person on your team notices. Finally, when you're finished with all your changes, you might find it very difficult to
merge your completed work with the rest of the company's main body of code. Sally (or others) may have made many other
changes in the repository that are difficult to incorporate into your working copy when you eventually run svn update after weeks
of isolation.

The better solution is to create your own branch, or line of development, in the repository. This allows you to save your not-
yet-completed work frequently without interfering with others' changes and while still selectively sharing information with your
collaborators. You'll see exactly how this works as we continue.

98

Branching and Merging

Creating a Branch

Creating a branch is very simple—you make a copy of your project tree in the repository using the svn copy command. Since your
project's source code is rooted in the / cal ¢/t runk directory, it's that directory that you'll copy. Where should the new copy
live? Wherever you wish. The repository location in which branches are stashed is left by Subversion as a matter of project policy.
Finally, your branch will need a name to distinguish it from other branches. Once again, the name you choose is unimportant to
Subversion—you can use whatever name works best for you and your team.

Let's assume that your team (like most) has a policy of creating branches in the br anches directory that is a sibling of the
project's trunk (the / cal ¢/ br anches directory in our scenario). Lacking inspiration, you settle on my- cal c- br anch asthe
name you wish to give your branch. This means that you'll create a new directory, / cal ¢/ br anches/ ny- cal c- br anch,
which beginsitslifeasacopy of / cal ¢/ t r unk.

Y ou may already have seen svn copy used to copy one file to another within aworking copy. But it can also be used to do aremote
copy—a copy that immediately results in a newly committed repository revision and for which no working copy is required at all.
Just copy one URL to another:

$ svn copy http://svn.exanpl e.com repos/cal ¢c/trunk \
http://svn. exanpl e. conl r epos/ cal ¢/ branches/ ny- cal c- branch \
-m"Creating a private branch of /calc/trunk."

Commi tted revision 341.

This command causes a near-instantaneous commit in the repository, creating a new directory in revision 341. The new directory is
acopy of / cal ¢/t runk. Thisisshown in Figure 4.3, “ Repository with new copy” Lwhileit'salso possible to create a branch by
using svn copy to duplicate a directory within the working copy, this technique isn't recommended. It can be quite slow, in fact!
Copying adirectory on the client side is a linear-time operation, in that it actually has to duplicate every file and subdirectory with-
in that working copy directory on the local disk. Copying a directory on the server, however, is a constant-time operation, and it's
the way most people create branches.

Figure 4.3. Repository with new copy

subversion does not support copying between different repositories. When using URLs with svn copy or svn move, you can only copy items within the same re-
pository.

99

Branching and Merging

y

—
P S— —
*=| trunk -
[b
s S —_—
*| branches Pt
p.l i
‘_, my-cale ;. e
_branch
R
—F‘ paint | —
—
e
™
* trunk -
T,
o N S
*| branches

Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need to worry about the repository grow-
ing huge—Subversion doesn't actually duplicate any data. Instead, it creates a new directory entry that points to an existing
tree. If you're an experienced Unix user, you'll recognize this as the same concept behind a hard link. As further changes are
made to files and directories beneath the copied directory, Subversion continues to employ this hard link concept where it
can. It duplicates data only when it is necessary to disambiguate different versions of objects.

This is why you'll often hear Subversion users talk about “cheap copies.” It doesn't matter how large the directory is—it
takes a very tiny, constant amount of time and space to make a copy of it. In fact, this feature is the basis of how commits
work in Subversion: each revision is a “cheap copy” of the previous revision, with a few items lazily changed within. (To
read more about this, visit Subversion's web site and read about the “ bubble up” method in Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the user, who simply sees copies of trees.
The main point here is that copies are cheap, both in time and in space. If you create a branch entirely within the repository
(by runningsvn copy URL1 URLZ2), it'saquick, constant-time operation. Make branches as often as you want.

Working with Your Branch

Now that you've created a branch of the project, you can check out a new working copy to start using it:

100

Branching and Merging

$ svn checkout http://svn.exanpl e.cont repos/cal ¢/ branches/ ny-cal c- branch
A ny-cal c-branch/ Makefil e

A ny-cal c-branch/integer.c

A ny-cal c-branch/button.c

ghecked out revision 341.

There's nothing special about this working copy; it simply mirrors a different directory in the repository. When you commit
changes, however, Sally won't see them when she updates, because her working copy is of / cal ¢/ t r unk. (Be sure to read the
section called “Traversing Branches' later in this chapter: the svn switch command is an alternative way of creating a working
copy of abranch.)

Let's pretend that aweek goes by, and the following commits happen:

* Youmakeachangeto/ cal c/ branches/ my- cal c- branch/ but t on. c, which creates revision 342.
* Youmakeachangeto/ cal ¢/ branches/ my- cal c- branch/ i nt eger . ¢, which creates revision 343.

» Sdly makesachangeto/ cal c/ trunk/ i nt eger. c, which creates revision 344.

Now two independent lines of development (shown in Figure 4.4, “The branching of one file's history”) are happening on i n-
t eger. c.

Figure 4.4. The branching of onefile's history

Im,::rfedl Icheﬁ. |
: 5 » my-calc-branch
integer.c r343
| cregled | (Changed changed
98 1303 ;341 344

time é)
Things get interesting when you look at the history of changes made to your copy of i nt eger . c:

$ pwd
/ honme/ user/ my-cal c- branch

$ svn log -v integer.c

r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M / cal c/ branches/ ny-cal c-branch/integer.c

* integer.c: frozzled the wazjub.

101

Branching and Merging

r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
A/ cal c/ branches/ ny-cal c-branch (from/cal c/trunk: 340)

Creating a private branch of /cal c/trunk.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

rog | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
A /calc/trunk/integer.c

* integer.c: adding this file to the project.

Notice that Subversion istracing the history of your branch'si nt eger . ¢ all the way back through time, even traversing the point
where it was copied. It shows the creation of the branch as an event in the history, because i nt eger . ¢ was implicitly copied
when al of / cal ¢/ t r unk/ was copied. Now look at what happens when Sally runs the same command on her copy of thefile:

$ pwd
/ hone/sal ly/ cal ¢

$ svn log -v integer.c

r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 COct 2002) | 2 lines
Changed pat hs:
M /cal c/trunk/integer.c

* integer.c: changed a docstring.

ro8 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed pat hs:
A /cal c/trunk/integer.c

* integer.c: adding this file to the project.

Sally sees her own revision 344 change, but not the change you made in revision 343. Asfar as Subversion is concerned, these two

102

Branching and Merging

commits affected different files in different repository locations. However, Subversion does show that the two files share a com-
mon history. Before the branch copy was made in revision 341, the files used to be the same file. That's why you and Sally both see
the changes made in revisions 303 and 98.

The Key Concepts Behind Branching

Y ou should remember two important lessons from this section. First, Subversion has no internal concept of a branch—it knows
only how to make copies. When you copy a directory, the resultant directory isonly a“branch” because you attach that meaning to
it. You may think of the directory differently, or treat it differently, but to Subversion it's just an ordinary directory that happens to
carry some extra historical information.

Second, because of this copy mechanism, Subversion's branches exist as normal filesystem directoriesin the repository. Thisis dif-
ferent from other version control systems, where branches are typicaly defined by adding extra-dimensional “labels’ to collections
of files. The location of your branch directory doesn't matter to Subversion. Most teams follow a convention of putting all branches
into a/ br anches directory, but you're free to invent any policy you wish.

Basic Merging

Now you and Sally are working on parallel branches of the project: you're working on a private branch, and Sally is working on the
trunk, or main line of development.

For projects that have a large number of contributors, it's common for most people to have working copies of the trunk. Whenever
someone needs to make a long-running change that is likely to disrupt the trunk, a standard procedure is to create a private branch
and commit changes there until all the work is complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that it's very easy to drift too far apart.
Remember that one of the problems with the “crawl in ahole” strategy is that by the time you're finished with your branch, it may
be near-impossible to merge your changes back into the trunk without a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide which changes are worth sharing; Sub-
version gives you the ability to selectively “copy” changes between branches. And when you're completely finished with your
branch, your entire set of branch changes can be copied back into the trunk. In Subversion terminology, the general act of replicat-
ing changes from one branch to another is called merging, and it is performed using various invocations of the svn mer ge subcom-
mand.

In the examples that follow, we're assuming that both your Subversion client and server are running Subversion 1.7 (or later). If
either client or server is older than version 1.5, things are more complicated: the system won't track changes automatically, forcing
you to use painful manual methods to achieve similar results. That is, you'll always need to use the detailed merge syntax to specify
specific ranges of revisions to replicate (see the section called “Merge Syntax: Full Disclosure” later in this chapter), and take spe-
cial care to keep track of what's already been merged and what hasn't. For this reason, we strongly recommend that you make sure
your client and server are at least at version 1.5.

Merge Tracking

Subversion 1.5 introduced the merge tracking feature to Subversion. Prior to this feature keeping track of merges required
cumbersome manual procedures or the use of external tools. Subsequent releases of Subversion introduced many enhance-
ments and bug fixes to merge tracking, which is why we recommend using the most recent versions on both your server and
client. Keep in mind that even if your server isrunning 1.5 or 1.6, you can still use a 1.7 client. Thisis particularly important
as regards merge tracking, because the overwhelming majority of fixesto it are on the client side.

Changesets

Before we proceed further, we should warn you that there's alot of discussion of “changes’ in the pages ahead. A lot of people ex-
perienced with version control systems use the terms “change” and “changeset” interchangeably, and we should clarify what Sub-

103

Branching and Merging

version understands as a changeset.

Everyone seemsto have a dlightly different definition of changeset, or at least a different expectation of what it means for aversion
control system to have one. For our purposes, let's say that a changeset is just a collection of changes with a unique name. The
changes might include textual edits to file contents, modifications to tree structure, or tweaks to metadata. In more common speak,
achangeset isjust a patch with aname you can refer to.

In Subversion, a global revision number N names a tree in the repository: it's the way the repository looked after the Nth commit.
It's also the name of an implicit changeset: if you compare tree N with tree N-1, you can derive the exact patch that was committed.
For thisreason, it's easy to think of revision Nas not just atree, but a changeset as well. If you use an issue tracker to manage bugs,
you can use the revision numbers to refer to particular patches that fix bugs—for example, “this issue was fixed by r9238.” Some-
body canthenrunsvn | og -r 9238 to read about the exact changeset that fixed the bug, and runsvn diff -c¢ 9238 to
see the patch itself. And (as you'll see shortly) Subversion's svn merge command is able to use revision numbers. You can merge
specific changesets from one branch to another by naming them in the merge arguments. passing - ¢ 9238 to svn merge would
merge changeset r9238 into your working copy.

Keeping a Branch in Sync

Continuing with our running example, let's suppose that a week has passed since you started working on your private branch. Y our
new featureisn't finished yet, but at the same time you know that other people on your team continue to make important changesin
the project's / t r unk. It'sin your best interest to replicate those changes to your own branch, just to make sure they mesh well
with your changes. Thisis done by performing a sync merge—a merge operation designed to bring your branch up to date with any
changes made to its ancestral parent branch since your branch was created.

Frequently keeping your branch in sync with the main development line helps prevent “surprise’ conflicts when the
_') time comes for you to fold your changes back into the trunk.

Subversion is aware of the history of your branch and knows when it split away from the trunk. To perform a sync merge, first
make sure your working copy of the branch is “clean”—that it has no local modifications reported by svn status. Then simply run:

$ pwd
/ hone/ user/ my-cal c- branch

$ svn nerge "~/ calc/trunk

--- Merging r345 through r356 into '.":

U button.c

U i nteger.c

--- Recording nergeinfo for nerge of r345 through r356 into '.":
u .

$

This basic syntax—svn ner ge URL—tells Subversion to merge al changes which have not been previously merged from the
URL to the current working directory (which is typicaly the root of your working copy). Notice that we're using the caret (*) syn-
tax? to avoid having to type out the entire/ t r unk URL. Also note the “Recording mergeinfo for merge...” notification. Thistells
you that the merge is updating the svn: ner gei nf o property. Well discuss both this property and these notifications later in this
chapter, in the section called “Mergeinfo and Previews’.

In this book and elsewhere (Subversion mailing lists, articles on merge tracking, etc.) you will frequently come across
_/J the term mergeinfo. Thisis simply shorthand for the svn: mer gei nf o property.

>Thiswas introduced in svn 1.6.

104

Branching and Merging

Keeping a Branch in Sync Without Merge Tracking

You may not always be able to use Subversion's merge tracking feature, perhaps because your server is running Subversion
1.4 or earlier. In such a scenario, you can of course still perform merges, but Subversion will need you to manually do many
of the historical calculations that it automatically does on your behalf when the merge tracking feature is available.

To replicate the most recent trunk changes you need to perform sync merges the “old-fashioned” way—Dby specifying ranges
of revisions you wish to merge.

Let'ssay you branched/ t r unk to/ br anches/ f oo- f eat ur e in revision 400:

$ svn log -v -r 400 ~/ branches/foo-feature

r400 | carol | 2011-11-09 10:51:27 -0500 (Wed, 09 Nov 2011) | 1 line
Changed pat hs:
A /branch/ b2 (from/trunk: 399)

Create branch for the foo feature

When you are ready to syncronize your branch with the ongoing changes from trunk, you specify the starting revision as the
revision of / t r unk which the branch was copied from and the ending revision as HEAD:

$ svn nmerge A/ trunk -r399: HEAD
--- Merging r400 through r556 into '.":

A i ncl ude/ f oo. h
U src/ main. c

A src/foo.c

After any conflicts have been resolved, you can commit the merged changed to your branch. Now, to avoid accidentaly try-
ing to merge these same changes into your branch again in the future, you'll need to record the fact that you've already
merged them. But where should that record be kept? One of the simplest places to record this information is in the log mes-
sage for the commit of the merge:

$ svn ci -m"Sync the foo-feature branch with ~/trunk through r556."
Sendi ng i ncl ude/ foo. h

"I:fansmtting file data .
Comitted revision 557.

The next time you sync / br anches/ f 0o- br anch with / t r unk you repeat this process, except that the starting revision
is the youngest revision that's already been merged in from the trunk. If you've been keeping good records of your mergesin
the commit log messages, you should be able to determine what that youngest revision was by reading the revision logs asso-
ciated with your branch. Once you know your starting revision, you can perform another sync merge:

105

Branching and Merging

$ svn nmerge "/ trunk -r556: HEAD

After running the prior example, your branch working copy now contains new local modifications, and these edits are duplications
of al of the changes that have happened on the trunk since you first created your branch:

$ svn status

M .
M button.c
g/l i nteger.c

At this point, the wise thing to do islook at the changes carefully with svn diff, and then build and test your branch. Notice that the
current working directory (“. ") has aso been modified; svn diff will show that its svn: mer gei nf o property has been either
created or modified. This is important merge-related metadata that you should not touch, since it is needed by future svn merge

commands. (We'll learn more about this metadata later in the chapter.)

After performing the merge, you might also need to resolve some conflicts—just as you do with svn update—or possibly make
some small edits to get things working properly. (Remember, just because there are no syntactic conflicts doesn't mean there aren't
any semantic conflicts!) If you encounter serious problems, you can always abort the local changes by running svn revert

- R (which will undo all local modifications) and starting a long “what's going on?’ discussion with your collaborators. If things
look good, however, you can submit these changes into the repository:

$ svn conmit -m "Merged | atest trunk changes to ny-cal c-branch."”

Sendi ng .
Sendi ng button.c
Sendi ng i nteger.c

Transmitting file data ..
Conmmitted revision 357.

At this point, your private branch is now “in sync” with the trunk, so you can rest easier knowing that as you continue to work in
isolation, you're not drifting too far away from what everyone else is doing.

Why Not Use Patches Instead?

A question may be on your mind, especialy if you're a Unix user: why bother to use svn merge at all? Why not smply use
svn patch or the operating system's patch command to accomplish the same job? For example:

cd ny-cal c-branch
svn diff -r 341: HEAD ~/cal c/trunk > ny-patch-file
svn patch my-patch-file

i nteger.c

ABCHPAP

Branching and Merging

In this particular example, there really isn't much difference. But svn merge has special abilities that surpass the patch pro-
gram. The file format used by patch is quite limited; it's able to tweak file contents only. There's no way to represent
changes to trees, such as the addition, removal, or renaming of files and directories. Nor can the patch program notice
changes to properties. If Sally's change had, say, added a new directory, the output of svn diff wouldn't have mentioned it at
all. svn diff outputs only the limited patch format, so there are some ideas it simply can't express. Even Subversion's own
svn patch subcommand, while more flexible than patch program, still has similar limitations.

The svn merge command, however, can express changes in tree structure and properties by directly applying them to your
working copy. Even more important, this command records the changes that have been duplicated to your branch so that
Subversion is aware of exactly which changes exist in each location (see the section called “Mergeinfo and Previews”). This
isacritical feature that makes branch management usable; without it, users would have to manually keep notes on which sets
of changes have or haven't been merged yet.

Suppose that another week has passed. Y ou've committed more changes to your branch, and your comrades have continued to im-
prove the trunk as well. Once again, you want to replicate the latest trunk changes to your branch and bring yourself in sync. Just
run the same merge command again!

$ svn nerge ~/cal c/trunk

svn: E195020: Cannot nerge into m xed-revision working copy [357:378]; try up\
dating first

$

Well that was unexpected! After making changes to your branch over the past week you now find yourself with a working copy
that contains a mixture of revisions (see the section called “Mixed-revision working copies’). With the release of Subversion 1.7
the svn merge subcommand disables merges into mixed-revision working copies by default. Without going into too much detail,
this is because of limitations in the way merges are tracked by the svn: ner gei nf o property (see the section called “Mergeinfo
and Previews’ for details). These limitations mean that merges into mixed-revision working copies can result in unexpected text
and tree conflicts.® We don't want any needless conflicts, so we update the working copy and then reattempt the merge.

$ svn up
Updating '."':
At revision 380.

$ svn nerge ~/cal c/trunk
--- Merging r357 through r380 into '.":

U i nteger.c

U Makefil e

A READNVE

--- Recording nergeinfo for nerge of r357 through r380 into '.":
u .

$

Subversion knows which trunk changes you previously replicated to your branch, so it carefully replicates only those changes you
don't yet have. And once again, you build, test, and svn commit the local modifications to your branch.

Subtree Merges and Subtree Mergeinfo

3The svn mer ge subcommand option - - al | ow ni xed- r evi si ons alows you to override this prohibition, but you should only do so if you understand the
ramifications and have a good reason for it.

107

Branching and Merging

In most of the examples in this chapter the merge target is the root directory of a branch (see the section called “What's a
Branch?’). While thisis a best practice, you may occasionally need to merge directly to some child of the branch root. This
type of merge is called a subtree merge and the mergeinfo recorded to describe it is called subtree mergeinfo. There is noth-
ing special about subtree merges or subtree mergeinfo. In fact there is really only one important point to keep in mind about
these concepts: the complete record of merges to a branch may not be contained solely in the mergeinfo on the branch root.
You may have to look to any subtree mergeinfo to get a full accounting. Fortunately Subversion does this for you and rarely
will you need to concern yourself with it. A brief example will help explain:

W need to nerge r958 fromtrunk to branches/ proj-X doc/ | NSTALL,
but that revision also affects main.c, which we don't want to nerge:
$ svn log --verbose --quiet -r 958 7/
r958 | bruce | 2011-10-20 13:28:11 -0400 (Thu, 20 Cct 2011)
Changed pat hs:
M /trunk/ doc/ | NSTALL
M /trunk/src/ min.c

No problem we'll do a subtree merge targeting the I NSTALL file
directly, but first take a note of what nergeinfo exists on the
root of the branch:
$ cd branches/ proj - X

$ svn propget svn:nergeinfo --recursive
Properties on '.":
svn: nergei nfo
/trunk: 651- 652

Now we performthe subtree nerge, note that nerge source

and target both point to | NSTALL:

$ svn merge "/ trunk/doc/ | NSTALL doc/| NSTALL -c 958

--- Merging r958 into 'doc/ I NSTALL':

U doc/ | NSTALL

--- Recording nergeinfo for merge of r958 into 'doc/| NSTALL':
G doc/ | NSTALL

Once the nmerge is conplete there is now subtree nmergei nfo on | NSTALL:
$ svn propget svn:nergel nfo --recursive
Properties on '."':
svn: mer gei nfo
/trunk: 651- 652
Properties on 'doc/ | NSTALL':
svn: mer gei nfo
/ trunk/ doc/ | NSTALL: 651- 652, 958

What if we then decide we do want all of r958? Easy, all we need do is
repeat the nerge of that revision, but this tine to the root of the
branch, Subversion notices the subtree nergeinfo on | NSTALL and doesn't
try to merge any changes to it, only the changes to main.c are nerged:
svn nerge ~/ subversion/trunk . -c 958
- Merging r958 into '.":

src/ main.c
- Recording nergeinfo for nmerge of r958 into '.":

AR HEHR

cC!

- Elidi ng nergeinfo from'doc/ | NSTALL':
doc/ | NSTALL

cC'

Y ou might be wondering why | NSTALL in the above example has mergeinfo for r651-652, when we only merged r958. This

108

Branching and Merging

is due to mergeinfo inheritance, which we'll cover in the sidebar Mergeinfo Inheritance. Also note that the subtree mergeinfo
ondoc/ | NSTALL was removed, or “elided”. Thisis called mergeinfo elision and it occurs whenever Subversion detects re-
dundant subtree mergeinfo.

merge. For users with alot of subtree mergeinfo this meant that relatively “simple’ merges (e.g. one which applied a
diff to only a single file) resulted in changes to every subtree with mergeinfo, even those that were not parents of the
effected path(s). This caused some level of confusion and frustration. Subversion 1.7 addresses this problem by only
updating the mergeinfo on subtrees which are parents of the paths modified by the merge (i.e. paths changed, added,
or deleted by application of the difference, see the section called “Merge Syntax: Full Disclosure’). The one excep-
tion to this behavior regards the actual merge target; the merge target's mergeinfo is aways updated to describe the
merge, even if the applied difference made no changes.

oj Prior to Subversion 1.7, merges unconditionally updated all of the subtree mergeinfo under the target to describe the

Reintegrating a Branch

What happens when you finally finish your work, though? Your new feature is done, and you're ready to merge your branch
changes back to the trunk (so your team can enjoy the bounty of your labor). The process is simple. First, bring your branch into
sync with the trunk again, just as you've been doing all along4:

$ svn nmerge ~/cal ¢/trunk

--- Merging r381 through r385 into '.":

] button.c

u READNVE

--- Recording nergeinfo for nmerge of r381 through r385 into '.
u .

$ # build, test,

$ svn commit -m "Final nmerge of trunk changes to ny-cal c-branch."

Sendi ng .
Sendi ng button.c
Sendi ng READVE

Transmitting file data ..
Committed revision 390.

Now, use svn merge with the - - r ei nt egr at e option to replicate your branch changes back into the trunk. Y ou'll need a work-
ing copy of / t r unk. You can get one by doing an svn checkout, dredging up an old trunk working copy from somewhere on your
disk, or using svn switch (see the section called “ Traversing Branches’). Y our trunk working copy cannot have any local edits or
contain a mixture of revisions (see the section called “Mixed-revision working copies’). While these are typically best practices for
merging anyway, they are required when using the - - r ei nt egr at e option.

Once you have a clean working copy of the trunk, you're ready to merge your branch back into it:

$ pwd
/ hone/ user/ cal c-trunk

$ svn update # (make sure the working copy is up to date)

“With Subversion 1.7 you don't absolutely have to do al your sync merges to the root of your branch as we do in this example. If your branch is effectively synced
viaa series of subtree merges then the reintegrate will work, but ask yourself, if the branch is effectively synced, then why are you doing subtree merges? Doing so
isalmost aways needlessly complex.

109

Branching and Merging

Updati ng '
At revision 390.

$ svn nmerge --reintegrate ~/ cal ¢/ branches/ ny-cal c-branch
--- Merging differences between repository URLs into '.":
U button.c
U i nteger.c

Makefil e
-- Recording nergeinfo for nmerge between repository URLs into
u .

$ # build, test, verify,

$ svn comit -m "Merge ny-cal c-branch back into trunk!"

Sendi ng .

Sendi ng button.c

Sendi ng i nteger.c
Sendi ng Makefil e

Transmitting file data ..
Conmmitted revision 391.

Congratulations, your branch-specific changes have now been merged back into the main line of development. Notice our use of
the - - r ei nt egr at e option this time around. The option is critical for reintegrating changes from a branch back into its original
line of development—don't forget it! It's needed because this sort of “merge back” is a different sort of work than what you've done
up until now. Previously, we were asking svn merge to grab the “next set” of changes from one line of development (the trunk)
and duplicate them to another (your branch). Thisisfairly straightforward, and each time Subversion knows how to pick up where
it left off. In our prior examples, you can see that first it merges the ranges 345:356 from trunk to branch; later on, it continues by
merging the next contiguously available range, 356:380. When doing the final sync, it merges the range 380:385.

When merging your branch back to the trunk, however, the underlying mathematics are quite different. Y our feature branch is now
a mishmash of both duplicated trunk changes and private branch changes, so there's no simple contiguous range of revisions to
copy over. By specifying the - - r ei nt egr at e option, you're asking Subversion to carefully replicate only those changes unique
to your branch. (And in fact, it does this by comparing the latest trunk tree with the latest branch tree: the resulting differenceis ex-
actly your branch changes!)

Keep in mind that the - - r ei nt egr at e option is quite specialized in contrast to the more general nature of most Subversion sub-
command options. It supports the use case descri bed above, but haslittle appl icability outside of that. Because of this narrow focus,
in addition to requiring an up-to-date working copy with no mixed-revisions, it will not function in combination with most of the
other svn merge options. You'll get an error if you use any non-global options but these: - -accept, --dry-run, -

-di ff3-cnd, - - ext ensi ons, or--qui et.

Now that your private branch is merged to trunk, you may wish to remove it from the repository:

$ svn del ete ~/ cal c/branches/ ny-cal c-branch \
-m "Renmove ny-cal c-branch, reintegrated with trunk in r391."
Committed revision 392.

But wait! Isn't the history of that branch valuable? What if somebody wants to audit the evolution of your feature someday and
look at all of your branch changes? No need to worry. Remember that even though your branch is no longer visible in the /
br anches directory, its existence is still an immutable part of the repository's history. A simple svn log command on the /
br anches URL will show the entire history of your branch. Y our branch can even be resurrected at some point, should you de-

5Reintegrate merges are allowed if the target is a shallow checkout (see the section called “Sparse Directories’) but any paths affected by the diff which are
“missing” due to the sparse working copy will be skipped, probably not what you intended!

110

Branching and Merging

sire (see the section called “ Resurrecting Deleted I1tems”).

Oncea- - r ei nt egr at e merge is done from branch to trunk, the branch is no longer usable for further work. It's not able to cor-
rectly absorb new trunk changes, nor can it be properly reintegrated to trunk again. For this reason, if you want to keep working on
your feature branch, we recommend destroying it and then re-creating it from the trunk:

$ svn delete http://svn. exanpl e. com repos/ cal c/ branches/ ny-cal c- branch \
-m "Remove ny-cal c-branch, reintegrated with trunk in r391."
Conmitted revision 392.

$ svn copy http://svn.exanpl e.com repos/cal ¢c/trunk \
http://svn. exanpl e. conif repos/ cal ¢/ branches/ ny- cal c- branch
-m "Recreate my-cal c-branch from trunk@EAD. "
Conmmitted revision 393.

There is another way of making the branch usable again after reintegration, without deleting the branch. See the section called
“Keeping a Reintegrated Branch Alive’.

Mergeinfo and Previews

The basic mechanism Subversion uses to track changesets—that is, which changes have been merged to which branches—is by re-
cording data in versioned properties. Specifically, merge data is tracked in the svn: ner gei nf o property attached to files and
directories. (If you're not familiar with Subversion properties, see the section called “ Properties’.)

Y ou can examine the property, just like any other:

cd ny-cal c-branch
svn propget svn:mergeinfo .
trunk: 341- 390

BT AP

While it is possible to modify svn: ner gei nf o just as you might any other versioned property, we strongly dis-
courage doing so unless you really know what you're doing.

or svn proplist --recursive when dealing with large amounts of subtree mergeinfo, see Subtree Merges and Subtree
Mergeinfo . The formatted output produced by the - - ver bose option with either of these subcommands is often
very helpful in these cases.

D The amount of svn: mer gei nf 0 on asingle path can get quite large, as can the output of asvn propget --recursive

The svn: ner gei nf o property is automatically maintained by Subversion whenever you run svn merge. Its value indicates
which changes made to a given path have been replicated into the directory in question. In our previous example, the path which is
the source of the merged changes is /trunk and the directory which has received the changes is /
br anches/ ny- cal c- br anch. Earlier versions of Subversion maintained the svn: mer gei nf o property silently. You could
still detect the changes, after a merge completed, with the svn diff or svn status subcommands, but the merge itself gave no indica-
tion when it changed the svn: mer gei nf o property. Thisisno longer true in Subversion 1.7, which has several new notifications
to alert you when a merge updates the svn: nmer gei nf o property. These notifications al begin with “--- Recording mergeinfo
for” and appear at the end of the merge. Unlike other merge notifications, these don't describe the application of a difference to a
working copy (see the section called “Merge Syntax: Full Disclosure”), but instead describe "housekeeping” changes made to keep
track of what was merged.

111

Branching and Merging

Subversion also provides a subcommand, svn mergeinfo, which is helpful in seeing not only which changesets a directory has ab-
sorbed, but also which changesets it's still eligible to receive. This gives a sort of preview of which changes a subsequent svn
mer ge operation would replicate to your branch.

$ cd ny-cal c-branch

Wi ch changes have al ready been nmerged fromtrunk to branch?
$ svn nergeinfo ~/ cal c/trunk

r341

r 342

r343

r 388

r 389

r390

Whi ch changes are still eligible to merge fromtrunk to branch?
$ svn nmergeinfo ~/ calc/trunk --showrevs eligible

r391

r392

r393

r 394

r395

$

The svn mergeinfo command requires a “source” URL (where the changes come from), and takes an optional “target” URL
(where the changes merge to). If no target URL is given, it assumes that the current working directory is the target. In the prior ex-
ample, because we're querying our branch working copy, the command assumes we're interested in receiving changes to /
branches/ mybr anch from the specified trunk URL.

Mergeinfo Inheritance

When a path hasthe svn: ner gei nf o property set on it we say it has explicit mergeinfo. This explicit mergeinfo describes
not only what changes were merged into that particular directory, but also all the children of that directory (because those
children inherit the mergeinfo of their parent path). For example:

What explicit nmergeinfo exists on a branch?
$ svn propget svn:nergei nfo A/ branches/proj-X --recursive
/trunk: 651- 652

What children does proj-X have?

$ svn list --recursive ~/ branches/proj-X
doc/

doc/ | NSTALL

READVE

src/min.c

Ask what revs were nerged to a file with no explicit nergeinfo
$ svn nergeinfo A/ trunk/src/ main.c ~ branches/proj-X src/min.c
651
652

Notice from our first subcommand that only the root of / br anches/ pr oj - X has any explicit mergeinfo. However, when

112

Branching and Merging

we use svh mer geinfo to ask what was merged to / br anches/ pr oj - X/ sr ¢/ mai n. c it reports that the two revisions
described in the explicit mergeinfo on /branches/proj-X were merged. This is because /
branches/ proj - X/ src/ mai n. ¢, having no explicit mergeinfo of its own, inherits the mergeinfo from its nearest par-
ent with explicit mergeinfo, / br anches/ pr oj - X.

There are two cases in which mergeinfo is not inherited. First, if a path has explicit mergeinfo, then it never inherits
mergeinfo. Another way to think of thisis that explicit mergeinfo is always a complete record of the merges to a given path,
once it exists it overrides any mergeinfo that path might otherwise inherit. The second way is when dealing with non-
inheritable mergeinfo, a special type of explicit mergeinfo that applies only to the directory on which the svn: ner gei nf o
property is set (and it's only directories, non-inheritable mergeinfo is never set on files). For example:

The '*' decorator indicates non-inheritable mergeinfo
$ svn propget svn:nergei nfo ~/ branches/ proj-X
/ trunk: 651- 652, 758*

Revision 758 is non-inheritable, but still applies to the path it is
set on. Here the '*' decorator signals that r758 is only partially
merged fromtrunk.

$ svn nergei nfo A/ trunk ~/branches/proj-X

651

652

758*

Revision 758 is not reported as nerged because it is non-inheritable
and applies only to ~/trunk

$ svn nergeinfo A/ trunk/src/min.c ~ branches/proj-X src/min.c

651

652

Y ou might never have to think about mergeinfo inheritance or encounter non-inheritable mergeinfo in your own repository.
A discussion of the full ramifications of mergeinfo inheritance are beyond the scope of this book. If you have more questions
check out some of the references mentioned in the section called “ The Final Word on Merge Tracking”

With the release of Subversion 1.7, the svn mergeinfo subcommand can also account for subtree mergeinfo and non-inheritable
mergeinfo. It accounts for subtree mergeinfo by use of the - - r ecur si ve or - - dept h options, while non-inheritable mergeinfo
is considered by default.

Let's say we have a branch with both subtree and non-inheritable mergeinfo:

$ svn propget svn:nergeinfo --recursive -v
Non-i nheritable nergeinfo
Properties on '.":
svn: mer gei nfo
/trunk: 651- 652, 758*
Subtree mergeinfo
Properties on 'doc/ | NSTALL':
svn: nergei nfo
/trunk/ doc/ | NSTALL: 651- 652, 958, 1060

From the above mergeinfo we see that r758 has only been merged into the root of the branch, but not any of the root's children. We
also see that both r958 and r1060 have been merged only to the doc/ | NSTALL file. When we use svn mergeinfo with the -
-recursi ve option to see what has been merged from ~/ t r unk to this branch, we see two revisions are flagged with the *

113

Branching and Merging

marker:

$ svn nergeinfo --showrevs=nerged ~/trunk . --recursive
651
652
758*
958*
1060

The * indicates revisions that are only partially merged to the target in question (the meaning is the same if we are checking for
eligible revisions). What this means in this example is that if we tried to merge r758 or r958 from ~/ t r unk then more changes
would result. Likewise, because r1060 is not flagged with a *, we know that it only affects doc/ | NSTALL and that trying to
merge it would have no result.®

Another way to get a more precise preview of amerge operationisto usethe- - dr y- r un option:

$ svn merge N calc/trunk --dry-run
--- Merging r391 through r395 into 'branch':
U i nteger.c

$ svn status
nothing printed, working copy is still unchanged.

The - - dr y- r un option doesn't actually apply any local changes to the working copy. It shows only status codes that would be
printed in areal merge. It's useful for getting a“high-level” preview of the potential merge, for those times when running svn diff
givestoo much detail.

-dept h=enpty /path/to/ merge/target toseeonly the changes to the immediate target of your merge. If
your merge target was a directory, only property differences are displayed. Thisis a handy way to see the changes to
the svn: mer gei nf o property recorded by the merge operation, which will remind you about what you've just
merged.

@) After performing a merge operation, but before committing the results of the merge, you can use svn di ff -

Of course, the best way to preview a merge operation is to just do it! Remember, running svn mergeisn't an inherently risky thing
(unless you've made local modifications to your working copy—but we already stressed that you shouldn't merge into such an en-
vironment). If you don't like the results of the merge, simply runsvn revert . - Rto revert the changes from your working
copy and retry the command with different options. The mergeisn't final until you actually svn commit the results.

Undoing Changes

An extremely common use for svn mergeisto roll back a change that has aready been committed. Suppose you're working away
happily on a working copy of / cal ¢/t r unk, and you discover that the change made way back in revision 303, which changed
i nt eger. c, is completely wrong. It never should have been committed. Y ou can use svn merge to “undo” the change in your
working copy, and then commit the local modification to the repository. All you need to do is to specify areverse difference. (You
can do this by specifying - - r evi si on 303: 302, or by an equivalent - - change - 303.)

8 This is often termed an “inoperative” merge. Though in this example the merge of r1060 would do something: It would update the mergeinfo on the root of the
branch, but it would be inoperative in the sense that no diff would be applied.

114

Branching and Merging

$ svn nerge -c -303 ~/calc/trunk

--- Reverse-nerging r303 into 'integer.c':

] i nteger.c

--- Recording nergeinfo for reverse nmerge of r303 into "integer.c':
U A-branch

$ svn status
M .
M i nteger.c

$ svn diff

#'verify that the change is renoved

$ svn conmmit -m "Undoi ng change comritted in r303."
Sendi ng i nteger.c

Transmitting file data .

Conmitted revision 350.

As we mentioned earlier, one way to think about a repository revision is as a specific changeset. By using the - r option, you can
ask svn merge to apply a changeset, or a whole range of changesets, to your working copy. In our case of undoing a change, we're
asking svn merge to apply changeset r303 to our working copy backward.

Keep in mind that rolling back a change like thisis just like any other svn mer ge operation, so you should use svn status and svn
diff to confirm that your work is in the state you want it to be in, and then use svn commit to send the final version to the reposit-
ory. After committing, this particular changeset is no longer reflected in the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still exists in revision 303. If somebody
checks out aversion of the cal ¢ project between revisions 303 and 349, shelll till see the bad change, right?

Y es, that's true. When we talk about “removing” a change, we're really talking about removing it from the HEAD revision. The ori-
gina change till exists in the repository's history. For most situations, this is good enough. Most people are only interested in
tracking the HEAD of a project anyway. There are special cases, however, where you really might want to destroy all evidence of
the commit. (Perhaps somebody accidentally committed a confidential document.) This isn't so easy, it turns out, because Subver-
sion was deliberately designed to never lose information. Revisions are immutable trees that build upon one another. Removing a
revision from history would cause a domino effect, creating chaosin al subsequent revisions and possibly invalidating all working
copies.

Resurrecting Deleted Items

The great thing about version control systems is that information is never lost. Even when you delete a file or directory, it may be
gone from the HEAD revision, but the object still exists in earlier revisions. One of the most common questions new users ask is,
“How do | get my old file or directory back?’

The first step is to define exactly which item you're trying to resurrect. Here's a useful metaphor: you can think of every object in
the repository as existing in a sort of two-dimensional coordinate system. The first coordinate is a particular revision tree, and the
second coordinate is a path within that tree. So every version of your file or directory is defined by a specific coordinate pair.
(Remember the “peg revision” syntax—foo.c@224—mentioned back in the section called “Peg and Operative Revisions’.)

First, you might need to use svn log to discover the exact coordinate pair you wish to resurrect. A good strategy istorunsvn | og
- -ver bose in adirectory that used to contain your deleted item. The - - ver bose (- v) option shows alist of al changed items
in each revision; all you need to do is find the revision in which you deleted the file or directory. Y ou can do this visualy, or by us-
ing another tool to examine the log output (via grep, or perhaps via an incremental search in an editor).

"The Subversion project has plans, however, to someday implement a command that would accomplish the task of permanently deleting information. In the mean-
time, see the section called “svndumpfilter” for a possible workaround.

115

Branching and Merging

$ cd parent-dir
$ svn log -v

r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines
Changed pat hs:

D /calc/trunk/real.c

M /calc/trunk/integer.c

Added fast fourier transformfunctions to integer.c.
Renmoved real.c because code now i n double.c.

In the example, we're assuming that you're looking for a deleted file r eal . ¢. By looking through the logs of a parent directory,
you've spotted that this file was deleted in revision 808. Therefore, the last version of the file to exist was in the revision right be-
fore that. Conclusion: you want to resurrect the path/ cal ¢/ t runk/ r eal . ¢ from revision 807.

That was the hard part—the research. Now that you know what you want to restore, you have two different choices.

One option is to use svn merge to apply revision 808 “in reverse.” (We already discussed how to undo changes in the section
called “Undoing Changes’.) This would have the effect of re-adding r eal . ¢ as alocal modification. The file would be scheduled
for addition, and after acommit, the file would again exist in HEAD.

In this particular example, however, this is probably not the best strategy. Reverse-applying revision 808 would not only schedule
r eal . c for addition, but the log message indicates that it would also undo certain changesto i nt eger . ¢, which you don't want.
Certainly, you could reverse-merge revision 808 and then svn revert the loca modifications to i nt eger . c, but this technique
doesn't scale well. What if 90 files were changed in revision 808?

A second, more targeted strategy is not to use svn merge at all, but rather to use the svn copy command. Simply copy the exact re-
vision and path “coordinate pair” from the repository to your working copy:

$ svn copy ~calc/trunk/real.c@07 ./real.c

$ svn status
A + real .c

$ svn conmit -m"Resurrected real.c fromrevision 807, /calc/trunk/real.c."
Addi ng real.c

Transnmitting file data .

Conmitted revision 1390.

The plus sign in the status output indicates that the item isn't merely scheduled for addition, but scheduled for addition “with his-
tory.” Subversion remembers where it was copied from. In the future, running svn log on this file will traverse back through the
file's resurrection and through all the history it had prior to revision 807. In other words, thisnew r eal . ¢ isn't realy new; it'sa
direct descendant of the original, deleted file. Thisis usually considered a good and useful thing. If, however, you wanted to resur-
rect the file without maintaining a historical link to the old file, this technique works just as well:

$ svn cat M calc/trunk/real.c@07 > ./real.c

$ svn add real.c
A real .c

116

Branching and Merging

$ svn commit -m"Re-created real.c fromrevision 807."
Addi ng real.c

Transmitting file data .

Commi tted revision 1390.

Although our example shows us resurrecting a file, note that these same techniques work just as well for resurrecting deleted dir-
ectories. Also note that aresurrection doesn't have to happen in your working copy—it can happen entirely in the repository:

$ svn copy "/ calc/trunk/real.c@07 ~/ calc/trunk/ \
-m"Resurrect real.c fromrevision 807."
Conmitted revision 1390.

$ svn update

Updating '.":

A real.c

Updated to revision 1390.

Advanced Merging

Here ends the automated magic. Sooner or later, once you get the hang of branching and merging, you're going to have to ask Sub-
version to merge specific changes from one place to another. To do this, you're going to have to start passing more complicated ar-
guments to svn merge. The next section describes the fully expanded syntax of the command and discusses a number of common
scenarios that require it.

Cherrypicking

Just as the term “changeset” is often used in version control systems, so is the term cherrypicking. This word refers to the act of
choosing one specific changeset from a branch and replicating it to another. Cherrypicking may aso refer to the act of duplicating
aparticular set of (not necessarily contiguous!) changesets from one branch to another. Thisisin contrast to more typical merging
scenarios, where the “next” contiguous range of revisions is duplicated automatically.

Why would people want to replicate just a single change? It comes up more often than you'd think. For example, let's go back in
time and imagine that you haven't yet merged your private feature branch back to the trunk. At the water cooler, you get word that
Sally made an interesting change to i nt eger . ¢ on the trunk. Looking over the history of commits to the trunk, you see that in
revision 355 she fixed a critical bug that directly impacts the feature you're working on. Y ou might not be ready to merge al the
trunk changes to your branch just yet, but you certainly need that particular bug fix in order to continue your work.

$ svn diff -c 355 ~/calc/trunk

I ndex: integer.c

--- integer.c (revision 354)
+++ integer.c (revision 355)
@-147,7 +147,7 @@

case 6: sprintf(info->operating system "HPFS (OS/2 or NT)"); break;
case 7 sprintf(info->operating system "Macintosh"); break;
case 8: sprintf(info->operating_system "Z-Systent); break;
- case 9: sprintf(info->operating system "CP/MV);
+ case 9: sprintf(info->operating_system "CP/M); break;
case 10 sprintf(info->operating_system "TOPS-20"); break;
case 11 sprintf(info->operating_system "NTFS (Wndows NT)"); break;

117

Branching and Merging

case 12: sprintf(info->operating system "QDOS"); break
Just as you used svn diff in the prior example to examine revision 355, you can pass the same option to svn mer ge:

$ svn nerge -c¢ 355 ~/calc/trunk

--- Merging r355 into '.":

U i nteger.c

--- Recording nergeinfo for nmerge of r355 into '.
u .

$ svn status
M i nteger.c

Y ou can now go through the usual testing procedures before committing this change to your branch. After the commit, Subversion
marks r355 as having been merged to the branch so that future “magic’ merges that synchronize your branch with the trunk know
to skip over r355. (Merging the same change to the same branch almost always resultsin a conflict!)

$ cd ny-cal c-branch

$ svn propget svn:mergeinfo .
[trunk: 341- 349, 355

Notice that r355 isn't listed as "eligible" to merge, because
it's already been merged.

$ svn nmergeinfo ~/ calc/trunk --showrevs eligible
r 350

r351

r352

r 353

r 354

r 356

r 357

r 358

r 359

r 360

$ svn nerge "/ cal c/trunk
--- Merging r350 through r354 into '.":
U

U integer.c
Makefil e
- Merging r356 through r360 into '.":

U integer.c
U button.c
- Recording nergeinfo for merge of r350 through r360 into '.":

This use case of replicating (or backporting) bug fixes from one branch to ancther is perhaps the most popular reason for cherry-
picking changes; it comes up al the time, for example, when ateam is maintaining a “release branch” of software. (We discuss this
pattern in the section called “ Release Branches’.)

118

Branching and Merging

Did you notice how, in the last example, the merge invocation merged two distinct ranges? The svn mer ge command
applied two independent patches to your working copy to skip over changeset 355, which your branch aready con-
tained. There's nothing inherently wrong with this, except that it has the potential to make conflict resolution trickier.
If the first range of changes creates conflicts, you must resolve them interactively for the merge process to continue
and apply the second range of changes. If you postpone a conflict from the first wave of changes, the whole merge
command will bail out with an error message.

A word of warning: while svn diff and svn merge are very similar in concept, they do have different syntax in many cases. Be sure
to read about them in Chapter 9, Subversion Complete Reference for details, or ask svn help. For example, svn merge requires a
working copy path as atarget, that is, a place where it should apply the generated patch. If the target isn't specified, it assumes you
aretrying to perform one of the following common operations:

* You want to merge directory changes into your current working directory.
» You want to merge the changes in a specific file into afile by the same name that exists in your current working directory.
If you are merging a directory and haven't specified a target path, svn mer ge assumes the first case and tries to apply the changes

into your current directory. If you are merging afile, and that file (or a file by the same name) exists in your current working dir-
ectory, svn mer ge assumes the second case and tries to apply the changesto alocal file with the same name.

Merge Syntax: Full Disclosure

You've now seen some examples of the svn merge command, and you're about to see several more. If you're feeling confused
about exactly how merging works, you're not alone. Many users (especially those new to version control) are initially perplexed
about the proper syntax of the command and about how and when the feature should be used. But fear not, this command is actu-
ally much simpler than you think! There's avery easy technique for understanding exactly how svn mer ge behaves.

The main source of confusion is the name of the command. The term “merge” somehow denotes that branches are combined to-
gether, or that some sort of mysterious blending of data is going on. That's not the case. A better name for the command might
have been svn diff-and-apply, because that's al that happens: two repository trees are compared, and the differences are applied to
awaorking copy.

If you're using svn merge to do basic copying of changes between branches, it will generally do the right thing automatically. For
example, acommand such as the following:

$ svn nerge ”/cal c/ branches/ sonme- branch

will attempt to duplicate any changes made on somne- br anch into your current working directory, which is presumably a work-
ing copy that shares some historical connection to the branch. The command is smart enough to only duplicate changes that your
working copy doesn't yet have. If you repeat this command once a week, it will only duplicate the “newest” branch changes that
happened since you last merged.
If you choose to use the svn merge command in all its full glory by giving it specific revision ranges to duplicate, the command
takes three main arguments:
1. Aninitial repository tree (often called the left side of the comparison)
2. A final repository tree (often called the right side of the comparison)
Bl TG SoR R AceRt the gl Terences an i asel fhanges (Often called the lr ot of the e e) o,

119

Branching and Merging

Once these three arguments are specified, then the two trees are compared and the differences applied to the target working copy as
local modifications. When the command is done, the results are no different than if you had hand-edited the files or run various svn
add or svn delete commands yourself. If you like the results, you can commit them. If you don't like the results, you can ssimply
svn revert al of the changes.

The syntax of svn merge alows you to specify the three necessary arguments rather flexibly. Here are some examples:

$ svn nmerge http://svn. exanpl e. conl repos/ branch1@50 \
http://svn. exanpl e. conf repos/ branch2@12 \
my-wor ki ng- copy

$ svn nerge -r 100: 200 http://svn.exanpl e.com repos/trunk ny-working-copy
$ svn merge -r 100: 200 http://svn. exanpl e. com repos/trunk

The first syntax lays out all three arguments explicitly, naming each tree in the form URL@REV and naming the working copy tar-
get. The second syntax is used as a shorthand for situations when you're comparing two different revisions of the same URL. The
last syntax shows how the working copy argument is optional; if omitted, it defaults to the current directory.

While the first example shows the “full” syntax of svn merge, useit very carefully; it can result in merges which do not record any
svn: mer gei nf o metadata at all. The next section talks a bit more about this.

Merges Without Mergeinfo

Subversion tries to generate merge metadata whenever it can, to make future invocations of svn merge smarter. There are still situ-
ations, however, wheresvn: mer gei nf o datais not created or changed. Remember to be a bit wary of these scenarios:

Merging unrelated sources
If you ask svnh merge to compare two URLS that aren't related to each other, a patch is till generated and applied to your
working copy, but no merging metadata is created. There's no common history between the two sources, and future “smart”
merges depend on that common history.

Merging from foreign repositories
While it's possble to run a command such as svn nmer ge -r 100: 200 ht -
tp://svn. foreignproject.comrepos/trunk, theresultant patch also lacks any historical merge metadata. At the
time of thiswriting, Subversion has no way of representing different repository URLswithin thesvn: mer gei nf o property.

Using - - i ghor e- ancestry
If this option is passed to svn merge, it causes the merging logic to mindlessly generate differences the same way that svn diff
does, ignoring any historical relationships. We discuss this later in this chapter in the section called “Noticing or Ignoring An-
cestry”.

Applying reverse merges from atarget's natural history
Earlier in this chapter (the section called “Undoing Changes’) we discussed how to use svn merge to apply a “reverse patch”
as away of rolling back changes. If this technique is used to undo a change to an object's persona history (e.g., commit r5 to
the trunk, 5hen immediately roll back r5 using svh nerge . -c -5), this sort of merge doesn't affect the recorded
mergeinfo.

Natural History and Implicit Mergeinfo

glnterestingly, after rolling back arevision like this, we wouldn't be able to reapply the revision using svn nmerge . -c 5, since the mergeinfo would already
list r5 as being applied. We would have to usethe - - i gnor e- ancest r y option to make the merge command ignore the existing mergeinfo!

120

Branching and Merging

As we mentioned earlier when discussing Mergeinfo Inheritance, a path that has the svn: ner gei nf o property set onitis
said to have “explicit” mergeinfo. Yes, thisimplies a path can have “implicit” mergeinfo, too! Implicit mergeinfo, or natural
history, is simply a path's own history (see the section called “ Examining History”) interpreted as mergeinfo. While implicit
mergeinfo is largely an implementation detail, it can be a useful abstraction for understanding merge tracking behavior.

Let's say you created / t r unk in revision 100 and then later, in revision 201, created */ br anches/ f eat ur e- br anch
as acopy of A/t runk@O00. The natural history of ~/ br anches/ f eat ur e- br anch contains all the repository paths
and revision ranges through which the history of the new branch has ever passed:

/trunk:100-200
[branches/feature-branch:201

With each new revision added to the repository, the natural history—and thus, implicit mergeinfo—of the branch continues
to expand to include those revisions until the day the branch is deleted. Here's what the implicit mergeinfo of our branch
would look like when the HEAD revision of the repository had grown to 234:

[trunk:100-200
[branches/feature-branch:201-234

Implicit mergeinfo does not actually show up in the svn: mer gei nf o property, but Subversion acts as if it does. Thisis
why if you check out ~/ br anches/ f eat ur e- br anch and then runsvn merge ~/trunk -c 58 in the resulting
working copy, nothing happens. Subversion knows that the changes committed to ~/ t r unk in revision 58 are aready
present in the target's natural history, so there's no need to try to merge them again. After al, avoiding repeated merges of
changes isthe primary goal of Subversion's merge tracking feature!

More on Merge Conflicts

Just like the svn update command, svn merge applies changes to your working copy. And therefore it's also capable of creating

conflicts. The conflicts produced by svn merge, however, are sometimes different, and this section explains those differences.

To begin with, assume that your working copy has no local edits. When you svn update to a particular revision, the changes sent
by the server always apply “cleanly” to your working copy. The server produces the delta by comparing two trees: a virtual snap-
shot of your working copy, and the revision tree you're interested in. Because the left hand side of the comparison is exactly equal

to what you aready have, the deltais guaranteed to correctly convert your working copy into the right hand tree.

But svn merge has no such guarantees and can be much more chaotic: the advanced user can ask the server to compare any two
trees at al, even ones that are unrelated to the working copy! This means there's large potential for human error. Users will some-
times compare the wrong two trees, creating a delta that doesn't apply cleanly. The svn mer ge subcommand does its best to apply
as much of the delta as possible, but some parts may be impossible. A common sign that you merged the wrong delta is unexpected

tree conflicts:

$ svn nerge -r 1288:1351 http://svn. exanpl e. conl myr epos/ branch
--- Mergi ng r1289 through r1351 into '.":

C bar.

C foo. c

C docs
-- Recording nergeinfo for nerge of r1289 through r1351 into '.'

121

Branching and Merging

u .
Sumary of conflicts:
Tree conflicts: 3

$ svn st
! C bar.c

> | ocal missing, incomng edit upon nerge
! C foo.c

> | ocal missing, inconming edit upon nerge
! C docs

> | ocal delete, inconming edit upon nerge

In the previous example, it might be the case that bar . ¢, f 00. ¢, and docs all exist in both snapshots of the branch being com-
pared. The resultant delta wants to change the contents of the corresponding paths in your working copy, but those paths don't exist
in the working copy. Whatever the case, the preponderance of tree conflicts most likely means that the user compared the wrong
two trees; it's a classic sign of user error. When this happens, it's easy to recursively revert al the changes created by the merge
(svn revert . --recursive), deeteany unversioned files or directories |left behind after the revert, and rerun svn merge
with the correct arguments.

Also keep in mind that a merge into aworking copy with no local edits can still produce text conflicts.

$ svn nerge -c 1701 http://svn. exanpl e.com nmyrepos/ branchX --accept postpone
--- Merging r1701 into '.":
C gl ub.c
C sputter.c
--- Recording nergeinfo for nerge of r1701 into '.":

u .
Summary of conflicts:

Text conflicts: 2

C.\SVN\ src-branch-1. 7. x>svn st
M .
? gl ub.c.nerge-left.r1700
? gl ub. c. nerge-right.r1701
C gl ub. c
? gl ub. c. wor ki ng
? Sputter.c.merge-left.r1700
? Sputter.c. merge-right.r1701
C sputter.c
? sputter.c.working
Summary of conflicts:
Text conflicts: 2

How can a conflict possibly happen? Again, because the user can request svn mer ge to define and apply any old delta to the work-
ing copy, that delta may contain textual changes that don't cleanly apply to a working file, even if the file has no local modifica-
tions.

Another small difference between svn update and svn mer ge is the names of the full-text files created when a conflict happens. In
the section called “Resolve Any Conflicts’, we saw that an update produces files named fil enane. m ne, file-
name. r OLDREV, and f i | ename. r NEWREV. When svn mer ge produces a conflict, though, it creates three filesnamed fi | e-
name. wor ki ng, fil enane. merge-| eft.rOLDREV, andfil enane. mer ge-ri ght. r NEWREV. In this case, the terms
“merge-left” and “merge-right” are describing which side of the double-tree comparison the file came from, “rOLDREV” describes
the revision of the left side, and “rNEWREV” the revision of the right side. In any case, these differing names help you distinguish
between conflicts that happened as aresult of an update and ones that happened as a result of amerge.

122

Branching and Merging

Blocking Changes

Sometimes there's a particular changeset that you don't want automatically merged. For example, perhaps your team's policy is to
do new development work on / t r unk, but is more conservative about backporting changes to a stable branch you use for releas-
ing to the public. On one extreme, you can manually cherrypick single changesets from the trunk to the branch—just the changes
that are stable enough to pass muster. Maybe things aren't quite that strict, though; perhaps most of the time you just let svn merge
automatically merge most changes from trunk to branch. In this case, you want a way to mask a few specific changes out, that is,
prevent them from ever being automatically merged.

Through Subversion 1.7, the only way to block a changeset is to make the system believe that the change has already been merged.
To do this, invoke the merge subcommand with the - - r ecor d- onl y option:

$ cd ny-cal c-branch

$ svn propget svn:nergeinfo .
/trunk: 1680- 3305

Let's nake the netadata |list r3328 as al ready nerged.
$ svn nerge -c 3328 --record-only ~/cal c/trunk
--- Recording nergeinfo for merge of r3328 into '.
u .

$ svn status
M

$ svn propget svn:mergeinfo .
/ trunk: 1680- 3305, 3328

$ svn commit -m "Block r3328 frombeing nerged to the branch."

Beginning with Subversion 1.7, - - r ecor d- onl y merges are transitive. This means that, in addition to recording mergeinfo de-
scribing the blocked revision(s), any svn: mer gei nf o property differences in the merge source are also applied. For example,
let's say we want to block the 'frazzle' feature from ever being merged from ~/ t r unk to our ~/ br anches/ pr oj - X branch. We
know that all the frazzle work was done on its own branch, which was reintegrated to t r unk in revision 1055:

$ svn log -v M trunk -r 1055

r1055 | francesca | 2011-09-22 07:40: 06 -0400 (Thu, 22 Sep 2011) | 3 lines
Changed pat hs:

M /trunk

M /trunk/src/frazzle.c

Reintegrate the frazzle-feature-branch to trunk.
Because revision 1055 was a reintegrate merge we know that mergeinfo was recorded describing the merge:

$ svn diff ~trunk -c 1055 --depth enpty
I ndex:

R (revision 1054)
F++ (revision 1055)

123

Branching and Merging

Property changes on:

Modi fi ed: svn: nergei nfo
Merged /branches/frazzl e-feature-branch:r997-1003

Now simply blocking merges of revision 1055 from ~/ t r unk isn't foolproof since someone could merge r996:1003 directly from
Al branches/ frazzl e-f eat ur e- br anch. Fortunately the transitive nature of - - r ecor d- onl y mergesin Subversion 1.7
prevents this; the - - r ecor d- onl y merge applies the svn: ner gei nf o diff from revision 1055, thus blocking merges directly
from the frazzle branch and as it has aways done prior to Subversion 1.7, it blocks merges of revision 1055 directly from
Al trunk:

$ cd branches/ proj - X

$ svn merge M trunk . -c 1055 --record-only
--- Merging r1055 into '.":
G

--- Recordi ng nmergeinfo for merge of r1055 into

G
$ svn diff --depth enpty .
| ndex:
.- . (revision 1070)
+++ . (wor ki ng copy)

Property changes on:

Modi fi ed: svn: nergei nfo
Merged /trunk:r1055
Merged /branches/frazzl e-feature-branch:r997-1003

Blocking changes with - - r ecor d- onl y works, but it's also alittle bit dangerous. The main problem is that we're not clearly dif-
ferentiating between the ideas of “| already have this change” and “I don't have this change, but don't currently want it.” We're ef-
fectively lying to the system, making it think that the change was previously merged. This puts the responsibility on you—the
user—to remember that the change wasn't actually merged, it just wasn't wanted. There's no way to ask Subversion for a list of
“blocked changelists.” If you want to track them (so that you can unblock them someday) you'll need to record them in atext file
somewhere, or perhaps in an invented property.

Keeping a Reintegrated Branch Alive

There is an alternative to destroying and re-creating a branch after reintegration. To understand why it works you need to under-
stand why the branch isinitially unfit for further use after it has been reintegrated.

Let's assume you created your branch in revision A. While working on your branch, you created one or more revisions which made
changes to the branch. Before reintegrating your branch back to trunk, you made a final merge from trunk to your branch, and com-
mitted the result of this merge as revision B.

When reintegrating your branch into the trunk, you create a new revision X which changes the trunk. The changes made to trunk in
thisrevision X are semantically equivalent to the changes you made to your branch between revisions A and B.

If you now try to merge outstanding changes from trunk to your branch, Subversion will consider changes made in revision X as
eligible for merging into the branch. However, since your branch already contains all the changes made in revision X, merging
these changes can result in spurious conflicts! These conflicts are often tree conflicts, especialy if renames were made on the

124

Branching and Merging

branch or the trunk while the branch was in development.

So what can be done about this? We need to make sure that Subversion does not try to merge revision X into the branch. Thisis
doneusing the- - r ecor d- onl y merge option, which was introduced in the section called “Blocking Changes’.

To carry out the record-only merge, get a working copy of the branch which was just reintegrated in revision X, and merge just re-
vision X from trunk into your branch, making sureto usethe- - r ecor d- onl y option.

This merge uses the cherry-picking merge syntax, which was introduced in the section called “ Cherrypicking”. Continuing with the
running example from the section called “ Reintegrating a Branch”, where revision X was revision 391;

$ cd ny-cal c-branch

$ svn update

Updating '."':

Updated to revision 393.

$ svn nmerge --record-only -c 391 ~/cal c/trunk

--- Recording nergeinfo for nerge of r391 into '.
u .

$ svn commit -m "Block revision 391 frombeing nmerged into ny-cal c-branch."

Sendi ng

Conmitted revision 394.

Now your branch is ready to soak up changes from the trunk again. After another sync of your branch to the trunk, you can even
reintegrate the branch a second time. If necessary, you can do another record-only merge to keep the branch alive. Rinse and re-
peat.

It should now also be apparent why deleting the branch and re-creating it has the same effect as doing the above record-only
merge. Because revision X is part of the natural history (see the sidebar Natural History and Implicit Mergeinfo) of the newly cre-
ated branch, Subversion will never attempt to merge revision X into the branch, avoiding spurious conflicts.

Merge-Sensitive Logs and Annotations

One of the main features of any version control system is to keep track of who changed what, and when they did it. The svn log
and svn blame subcommands are just the tools for this. when invoked on individua files, they show not only the history of
changesets that affected the file, but also exactly which user wrote which line of code, and when she did it.

When changes start getting replicated between branches, however, things start to get complicated. For example, if you were to ask
svn log about the history of your feature branch, it would show exactly every revision that ever affected the branch:

$ cd ny-cal c-branch
$ svn log -q

r341 | user | 2002-11-03 07:17:16 -0600 (Sun, 03 Nov 2002)

125

Branching and Merging

But is this really an accurate picture of al the changes that happened on the branch? What's left out here is the fact that revisions
390, 381, and 357 were actualy the results of merging changes from the trunk. If you look at one of these logs in detail, the mul-
tiple trunk changesets that comprised the branch change are nowhere to be seen:

$ svn log -v -r 390

r390 | user | 2002-11-22 11:01:57 -0600 (Fri, 22 Nov 2002) | 1 line
Changed pat hs:

M / branches/ ny- cal c- branch/ button. c

M / branches/ my- cal c- br anch/ READVE

Fi nal merge of trunk changes to ny-cal c-branch.

We happen to know that this merge to the branch was nothing but a merge of trunk changes. How can we see those trunk changes
as well? The answer is to use the - - use- ner ge- hi st ory (- g) option. This option expands those “child” changes that were
part of the merge.

$ svn log -v -r 390 -g

r390 | user | 2002-11-22 11:01:57 -0600 (Fri, 22 Nov 2002) | 1 line
Changed pat hs:

M / branches/ ny- cal c- branch/ button. c

M / branches/ ny- cal c- br anch/ READVE

Fi nal merge of trunk changes to ny-cal c-branch.

r383 | sally | 2002-11-21 03:19:00 -0600 (Thu, 21 Nov 2002) | 2 lines
Changed pat hs:

M / branches/ ny- cal c- branch/ button. c
Merged via: r390

Fi x inverse graphic error on button.

r382 | sally | 2002-11-20 16:57:06 -0600 (Wed, 20 Nov 2002) | 2 lines
Changed pat hs:

M / branches/ nmy- cal c- br anch/ READVE
Merged via: r390

Docunent mny last fix in README

By making the log operation use merge history, we see not just the revision we queried (r390), but also the two revisions that came
along on the ride with it—a couple of changes made by Sally to the trunk. This is a much more complete picture of history!

The svn blame command also takes the - - use- ner ge- hi st ory (- g) option. If this option is neglected, somebody |ooking at
aline-by-line annotation of but t on. ¢ may get the mistaken impression that you were responsible for the lines that fixed a certain
error:

126

Branching and Merging

$ svn blame button.c

390 user retval = inverse_func(button, path);
390 user return retval;
390 user }

And while it's true that you did actually commit those three lines in revision 390, two of them were actually written by Sally back
inrevision 383:

$ svn blanme button.c -g

G 383 sally retval = inverse_func(button, path);
G 383 sally return retval;
390 user }

Now we know who to really blame for those two lines of code!

Noticing or Ignoring Ancestry

When conversing with a Subversion developer, you might very likely hear reference to the term ancestry. Thisword is used to de-
scribe the relationship between two objects in a repository: if they're related to each other, one object is said to be an ancestor of
the other.

For example, suppose you commit revision 100, which includes a change to afile f 00. ¢. Then f 00. c@®9 is an “ancestor” of
f 00. c@00. On the other hand, suppose you commit the deletion of f 00. ¢ inrevision 101, and then add a new file by the same
nameinrevision 102. Inthiscase, f 00. c@9 and f 00. c@ 02 may appear to be related (they have the same path), but in fact are
completely different objects in the repository. They share no history or “ancestry.”

The reason for bringing this up is to point out an important difference between svn diff and svn merge. The former command ig-
nores ancestry, while the latter command is quite sensitive to it. For example, if you asked svn diff to compare revisions 99 and
102 of f 00. ¢, you would see line-based diffs; the diff command is blindly comparing two paths. But if you asked svn merge to
compare the same two objects, it would notice that they're unrelated and first attempt to delete the old file, then add the new file;
the output would indicate a deletion followed by an add:

Most merges involve comparing trees that are ancestrally related to one another; therefore, svn merge defaults to this behavior.
Occasionaly, however, you may want the mer ge command to compare two unrelated trees. For example, you may have imported
two source-code trees representing different vendor releases of a software project (see the section called “Vendor Branches’). If
you ask svn merge to compare the two trees, you'd see the entire first tree being deleted, followed by an add of the entire second
tree! In these situations, you'll want svn merge to do a path-based comparison only, ignoring any relations between files and dir-
ectories. Add the - - i gnor e- ancest ry option to your merge command, and it will behave just like svn diff. (And conversely,
the--noti ce-ancest ry option will cause svn diff to behave like the syn mer ge command.)

127

Branching and Merging

The - - i gnor e- ancest ry option aso disables Merge Tracking. This means that svn: nmer gei nf o is not con-
_) sidered when svnh merge is determining what revisions to merge, nor is svn: mer gei nf o recorded to describe the
merge.

Merges and Moves

A common desire is to refactor source code, especially in Java-based software projects. Files and directories are shuffled around
and renamed, often causing great disruption to everyone working on the project. Sounds like a perfect case to use a branch, doesn't
it? Just create a branch, shuffle things around, and then merge the branch back to the trunk, right?

Alas, this scenario doesn't work so well right now and is considered one of Subversion's current weak spots. The problem is that
Subversion's svn update command isn't as robust asit should be, particularly when dealing with copy and move operations.

When you use svn copy to duplicate afile, the repository remembers where the new file came from, but it fails to transmit that in-
formation to the client which is running svn update or svn merge. Instead of telling the client, “Copy that file you already have to
this new location,” it sends down an entirely new file. This can lead to problems, especially because the same thing happens with
renamed files. A lesser-known fact about Subversion is that it lacks “true renames’—the svn move command is nothing more than
an aggregation of svn copy and svn delete.

For example, suppose that while working on your private branch, you rename i nt eger . ¢ to whol e. c. Effectively you've cre-
ated anew filein your branch that is a copy of the original file, and deleted the original file. Meanwhile, back ont r unk, Sally has
committed some improvementsto i nt eger . ¢c. Now you decide to merge your branch to the trunk:

$ cd calc/trunk

$ svn nerge --reintegrate ~/cal c/branches/ ny-cal c-branch
--- Merging differences between repository URLs into '.":
D i nteger.c

A whol e. ¢

--- Recordi ng nmergeinfo for merge between repository URLS into
u .

This doesn't look so bad at first glance, but it's also probably not what you or Sally expected. The merge operation has deleted the
latest version of the i nt eger. c file (the one containing Sally's latest changes), and blindly added your new whol e. ¢
file—which is a duplicate of the older version of i nt eger . c. The net effect is that merging your “rename” to the trunk has re-
moved Sally's recent changes from the latest revision!

This isn't true data loss. Sally's changes are till in the repository's history, but it may not be immediately obvious that this has
happened. The moral of this story is that until Subversion improves, be very careful about merging copies and renames from one
branch to another.

Blocking Merge-Unaware Clients

If you've just upgraded your server to Subversion 1.5 or later, there's arisk that pre-1.5 Subversion clients can cause problems with
Merge Tracking. This is because pre-1.5 clients don't support this feature; when one of these older clients performs svn merge, it
doesn't modify the value of the svn: ner gei nf o property at all. So the subsequent commit, despite being the result of a merge,
doesn't tell the repository about the duplicated changes—that information is lost. Later on, when “merge-aware’ clients attempt
automatic merging, they're likely to run into all sorts of conflicts resulting from repeated merges.

If you and your team are relying on the merge-tracking features of Subversion, you may want to configure your repository to pre-
vent older clients from committing changes. The easy way to do this is by inspecting the “capabilities’” parameter inthe st art -

128

Branching and Merging

conmi t hook script. If the client reports itself as having mer gei nf o capabilities, the hook script can alow the commit to start.
If the client doesn't report that capability, have the hook deny the commit. Example 4.1, “Merge-tracking gatekeeper start-commit
hook script” gives an example of such a hook script:

Example 4.1. Merge-tracking gatekeeper start-commit hook script

#!/ usr/ bin/env python
i mport sys

The start-conmit hook is invoked before a Subversion txn is created
in the process of doing a conmit. Subversion runs this hook

by invoking a program (script, executable, binary, etc.) naned
"start-conmmt' (for which this file is a tenplate)

with the follow ng ordered argunents:

[1] REPCS-PATH (the path to this repository)

[2] USER (the authenticated user attenpting to comit)

[3] CAPABILITIES (a colon-separated |ist of capabilities reported
by the client; see note bel ow)

HHFEHHFHER

capabilities = sys.argv[3].split(':")
if "mergeinfo" not in capabilities:
sys.stderr.wite("Conmts from nmerge-tracki ng-unaware clients are "
"not permtted. Please upgrade to Subversion 1.5 "
"or newer.\n")
Sys. exi

t(1)
sys. exit(0)

For more information about hook scripts, see the section called “Implementing Repository Hooks'.

The Final Word on Merge Tracking

The bottom line is that Subversion's merge-tracking feature has an extremely complex internal implementation, and the
svn: mer gei nf o property isthe only window the user hasinto the machinery.

Sometimes mergeinfo will appear on paths that you didn't expect to be touched by an operation. Sometimes mergeinfo won't be
generated at all, when you expect it to. Furthermore, the management of mergeinfo metadata has a whole set of taxonomies and be-
haviors around it, such as “explicit” versus “implicit” mergeinfo, “operative’ versus “inoperative” revisions, specific mechanisms
of mergeinfo “elision,” and even “inheritance” from parent to child directories.

We've chosen to only briefly cover, if at al, these detailed topics for a couple of reasons. First, the level of detail is absolutely
overwhelming for a typical user. Second, and more importantly, the typical user shouldn't have to understand these concepts; they
should typically remain in the background as pesky implementation details. All that said, if you enjoy this sort of thing, you can get
a fantastic overview in a paper posted a CollabNet's website; ht-
tp://www.collab.net/community/subversion/articles/merge-info.html.

For now, if you want to steer clear of the complexities of merge tracking, we recommend that you follow these simple best prac-
tices:
« For short-term feature branches, follow the simple procedure described throughout the section called “Basic Merging”.

» Avoid subtree merges and subtree mergeinfo, perform merges only on the root of your branches, not on subdirectories or files
(see Subtree Merges and Subtree Mergeinfo) .

» Don't ever edit the svn: ner gei nf o property directly; use svn merge with the - - r ecor d- onl y option to effect a desired

129

http://www.collab.net/community/subversion/articles/merge-info.html
http://www.collab.net/community/subversion/articles/merge-info.html

Branching and Merging

change to the metadata (as demonstrated in the section called “Blocking Changes”).

* Your merge target should be aworking copy which represents the root of a complete tree representing a single location in the re-
pository at asingle point in time;

e Don'tusethe--al | ow ni xed-r evi si ons option to merge into mixed-revision working copies.
« Don't merge to targets with “ switched” subdirectories (as described next in the section called “ Traversing Branches”).
* Avoid merges to targets with sparse directories. Likewise, don't merge to depths other than - - dept h=i nfinity

« Besureyou have read access to all of the merge source and read/write accessto al of the merge target.

Traversing Branches

The svn switch command transforms an existing working copy to reflect a different branch. While this command isn't strictly ne-
cessary for working with branches, it provides a nice shortcut. In one of our earlier examples, after creating your private branch,
you checked out a fresh working copy of the new repository directory. Instead, you can ssimply ask Subversion to change your
working copy of / cal ¢/ t r unk to mirror the new branch location:

$ cd calc

$ svn info | grep URL
URL: http://svn.exanpl e.conlrepos/cal c/trunk

$ svn switch "/ cal c/branches/ ny-cal c- branch
U i nteger.c

U button.c

U Makefil e

Updated to revision 341.

$ svn info | grep URL
URL: http://svn.exanpl e.conifrepos/cal c/ branches/ my-cal c-branch

“Switching” a working copy that has no local modifications to a different branch results in the working copy looking just as it
would if you'd done a fresh checkout of the directory. It's usually more efficient to use this command, because often branches differ
by only a small degree. The server sends only the minimal set of changes necessary to make your working copy reflect the branch
directory.

The svn switch command also takesa - - r evi si on (- r) option, so you need not always move your working copy to the HEAD
of the branch.

Of course, most projects are more complicated than our cal ¢ example, and contain multiple subdirectories. Subversion users of-
ten follow a specific algorithm when using branches:

1. Copy the project's entire “trunk” to anew branch directory.

2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch work needs to happen on only a specific subdirectory, she uses svn switch to move
only that subdirectory to the branch. (Or sometimes users will switch just a single working file to the branch!) That way, the user

can continue to receive normal “trunk” updates to most of her working copy, but the switched portions will remain immune (unless
someone commits a change to her branch). This feature adds a whole new dimension to the concept of a “mixed working

130

Branching and Merging

—not only can working copies contain a mixture of working revisions, but they can also contain a mixture of repository locations
aswell.

Typically switched subdirectories share common ancestry with the location which is switched “away” from. However
_') svn switch can switch a subdirectory to mirror a repository location which it shares no common ancestry with. To do
thisyou need to usethe - - i gnor e- ancest r y option.

If your working copy contains a number of switched subtrees from different repository locations, it continues to function as nor-
mal. When you update, you'll receive patches to each subtree as appropriate. When you commit, your local changes are still applied
as asingle, atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these locations must all be within the
same repository. Subversion repositories aren't yet able to communicate with one another; that feature is planned for the future.1°

their ht t pd. conf configuration file a permanent redirect from the old URL location to the new one (via the Re-

di r ect Per manent directive). Subversion clients will generally display the new repository URL in error messages
generated when the user attempts to use working copies which still reflect the old URL location. In fact, Subversion
1.7 clients will go a step further, automatically relocating the working copy to the new URL.

@j Administrators who need to change the URL of a repository which is accessed via HTTP are encouraged to add to

Switches and Updates

Have you noticed that the output of svn switch and svn update looks the same? The switch command is actually a superset
of the update command.

When you run svn update, you're asking the repository to compare two trees. The repository does so, and then sends a de-
scription of the differences back to the client. The only difference between svn switch and svn update is that the latter com-
mand always compares two identical repository paths.

That is, if your working copy isamirror of / cal ¢/ t r unk, svn update will automatically compare your working copy of /
cal c/trunk to/ cal c/trunk inthe HEAD revision. If you're switching your working copy to a branch, svn switch will
compare your working copy of / cal ¢/ t r unk to some other branch directory in the HEAD revision.

In other words, an update moves your working copy through time. A switch moves your working copy through time and
space.

Because svn switch is essentialy a variant of svn update, it shares the same behaviors; any local modifications in your working
copy are preserved when new data arrives from the repository.

Have you ever found yourself making some complex edits (in your / t r unk working copy) and suddenly realized,
_} “Hey, these changes ought to be in their own branch?’ Thereis a great two step technique to do this:

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. coni repos/ cal ¢/ branches/ newbranch \
-m"Create branch 'newbranch'.”
Committed revision 353.
$ svn sw tch ~/cal c/ branches/ newbranch
At revision 353.

0y ou can, however, use svn relocate if the URL of your server changes and you don't want to abandon an existing working copy. See svn relocate in Chapter 9,
Subversion Complete Reference for more information and an example.

131

Branching and Merging

The svn switch command, like svn update, preserves your local edits. At this point, your working copy is now are-
flection of the newly created branch, and your next svn commit invocation will send your changes there.

Tags

Another common version control concept is atag. A tag isjust a “snapshot” of a project in time. In Subversion, this idea already
seems to be everywhere. Each repository revision is exactly that—a snapshot of the filesystem after each commit.

However, people often want to give more human-friendly names to tags, such asr el ease- 1. 0. And they want to make snap-
shots of smaller subdirectories of the filesystem. After all, it's not so easy to remember that release 1.0 of a piece of software is a
particular subdirectory of revision 4822.

Creating a Simple Tag

Once again, svn copy comes to the rescue. If you want to create a snapshot of / cal ¢/ t r unk exactly asit looks in the HEAD re-
vision, make a copy of it:

$ svn copy http://svn. exanpl e. conl repos/cal c/trunk \
http://svn. exanpl e.conm repos/cal c/tags/rel ease-1.0 \
-m"Tagging the 1.0 rel ease of the 'calc' project.”

Commi tted revision 902.

This example assumes that a/ cal ¢/ t ags directory already exists. (If it doesn't, you can create it using svn mkdir.) After the
copy completes, the new r el ease- 1. O directory is forever a snapshot of how the/ t r unk directory looked in the HEAD revi-
sion at the time you made the copy. Of course, you might want to be more precise about exactly which revision you copy, in case
somebody else may have committed changes to the project when you weren't looking. So if you know that revision 901 of /

cal ¢/t runk isexactly the snapshot you want, you can specify it by passing-r 901 to the svn copy command.

But wait a moment: isn't this tag creation procedure the same procedure we used to create a branch? Yes, in fact, it is. In Subver-
sion, there's no difference between a tag and a branch. Both are just ordinary directories that are created by copying. Just as with
branches, the only reason a copied directory is a“tag” is because humans have decided to treat it that way: as long as nobody ever
commits to the directory, it forever remains a snapshot. If people start committing to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags. The first approach is “hands off”: as
a matter of project policy, decide where your tags will live, and make sure all users know how to treat the directories they copy.
(That is, make sure they know not to commit to them.) The second approach is more paranoid: you can use one of the access con-
trol scripts provided with Subversion to prevent anyone from doing anything but creating new copies in the tags area (see
Chapter 6, Server Configuration). The paranoid approach, however, isn't usually necessary. If a user accidentally commits a change
to atag directory, you can simply undo the change as discussed in the previous section. Thisis version control, after all!

Creating a Complex Tag

Sometimes you may want a “snapshot” that is more complicated than asingle directory at asingle revision.

For example, pretend your project is much larger than our cal ¢ example: suppose it contains a number of subdirectories and
many more files. In the course of your work, you may decide that you need to create a working copy that is designed to have spe-
cific features and bug fixes. Y ou can accomplish this by selectively backdating files or directories to particular revisions (using svn
update with the - r option liberally), by switching files and directories to particular branches (making use of svn switch), or even
just by making a bunch of local changes. When you're done, your working copy is a hodgepodge of repository locations from dif-
ferent revisions. But after testing, you know it's the precise combination of data you need to tag.

132

Branching and Merging

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want to make a snapshot of your exact
working copy arrangement and store it in the repository. Luckily, svn copy actually has four different uses (which you can read
about in Chapter 9, Subversion Complete Reference), including the ability to copy aworking copy tree to the repository:

$1s
ny - wor ki ng- copy/

$ svn copy ny-working-copy \
http://svn. exanpl e. conm repos/ cal ¢/ tags/ mytag \
-m"Tag nmy existing working copy state."

Conmitted revision 940.

Now there is a new directory in the repository, / cal ¢/t ags/ myt ag, which is an exact snapshot of your working copy—mixed
revisions, URLSs, local changes, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where you have a bunch of local changes
made to your working copy, and you'd like a collaborator to see them. Instead of running svn diff and sending a patch file (which
won't capture directory or symlink changes), you can use svn copy to “upload” your working copy to a private area of the reposit-
ory. Your collaborator can then either check out a verbatim copy of your working copy or use svn merge to receive your exact
changes.

While thisis a nice method for uploading a quick snapshot of your working copy, note that thisis not a good way to initially create
a branch. Branch creation should be an event unto itself, and this method conflates the creation of a branch with extra changes to
files, all within asinglerevision. This makes it very difficult (later on) to identify a single revision number as a branch point.

Branch Maintenance

You may have noticed by now that Subversion is extremely flexible. Because it implements branches and tags with the same un-
derlying mechanism (directory copies), and because branches and tags appear in normal filesystem space, many people find Sub-
version intimidating. It's almost too flexible. In this section, we'll offer some suggestions for arranging and managing your data
over time.

Repository Layout

There are some standard, recommended ways to organize a repository. Most people create at r unk directory to hold the “main
line” of development, abr anches directory to contain branch copies, and at ags directory to contain tag copies. If arepository
holds only one project, often people create these top-level directories:

/
trunk/
branches/

tags/

If arepository contains multiple projects, admins typically index their layout by project. See the section called “Planning Y our Re-
pository Organization” to read more about “project roots’, but here's an example of such alayout:

133

Branching and Merging

paint/
trunk/
branches/
tagy/
calc/
trunk/
branches/

tagy

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever works best for you or your
team. Remember that whatever you choosg, it's not a permanent commitment. Y ou can reorganize your repository at any time. Be-
cause branches and tags are ordinary directories, the svn move command can move or rename them however you wish. Switching
from one layout to another is just a matter of issuing a series of server-side moves; if you don't like the way things are organized in
the repository, just juggle the directories around.

Remember, though, that while moving directories is easy to do, you need to be considerate of other users as well. Your juggling
can disorient users with existing working copies. If a user has a working copy of a particular repository directory and your svn
move subcommand removes the path from the latest revision, then when the user next runs svn update, she is told that her work-
ing copy represents a path that no longer exists. Sheis then forced to svn switch to the new location.

Data Lifetimes

Another nice feature of Subversion's model is that branches and tags can have finite lifetimes, just like any other versioned item.
For example, suppose you eventually finish all your work on your personal branch of the cal ¢ project. After merging all of your
changesback into/ cal ¢/t r unk, there's no need for your private branch directory to stick around anymore:

$ svn delete http://svn. exanpl e. conf repos/ cal c/ branches/ ny-cal c-branch \
-m "Renmovi ng obsol ete branch of calc project.”

Committed revision 375.

And now your branch is gone. Of course, it's not realy gone: the directory is simply missing from the HEAD revision, no longer
distracting anyone. If you use svn checkout, svn switch, or svn list to examine an earlier revision, you can still see your old
branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data is very easy in Subversion. If
there's adeleted directory (or file) that you'd like to bring back into HEAD, simply use svn copy to copy it from the old revision:

$ svn copy http://svn. exanpl e. coni repos/ cal c/ branches/ ny-cal c- branch@74 \
http://svn. exanpl e. conl repos/ cal ¢/ branches/ ny-cal c-branch \
-m "Restore ny-cal c-branch."

Conmitted revision 376.

In our example, your personal branch had arelatively short lifetime: you may have created it to fix a bug or implement a new fea-
ture. When your task is done, so is the branch. In software development, though, it's also common to have two “main” branches
running side by side for very long periods. For example, suppose it's time to release a stable version of the cal ¢ project to the
public, and you know it's going to take a couple of months to shake bugs out of the software. Y ou don't want people to add new

134

Branching and Merging

featuresto the project, but you don't want to tell al developersto stop programming either. So instead, you create a“ stable” branch
of the software that won't change much:

$ svn copy http://svn.exanpl e.com repos/cal c/trunk \
http://svn. exanpl e. coni repos/ cal ¢/ branches/stable-1.0 \
-m"Creating stable branch of calc project.”

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) featuresto/ cal ¢/t r unk, and you can declare a
project policy that only bug fixes are to be committed to/ cal ¢/ br anches/ st abl e- 1. 0. That is, as people continue to work
on the trunk, a human selectively ports bug fixes over to the stable branch. Even after the stable branch has shipped, you'll prob-
ably continue to maintain the branch for along time—that is, as long as you continue to support that release for customers. Well
discuss this more in the next section.

Common Branching Patterns

There are many different uses for branching and svn merge, and this section describes the most common.

Version control is most often used for software development, so here's aquick peek at two of the most common branching/merging
patterns used by teams of programmers. If you're not using Subversion for software development, feel free to skip this section. If
you're a software developer using version control for the first time, pay close attention, as these patterns are often considered best
practices by experienced folk. These processes aren't specific to Subversion; they're applicable to any version control system. Still,
it may help to see them described in Subversion terms.

Release Branches

Most software has atypical life cycle: code, test, release, repeat. There are two problems with this process. First, developers need
to keep writing new features while quality assurance teams take time to test supposedly stable versions of the software. New work
cannot halt while the software is tested. Second, the team almost always needs to support older, released versions of software; if a
bug is discovered in the latest code, it most likely exists in released versions as well, and customers will want to get that bug fix
without having to wait for amajor new release.

Here's where version control can help. The typical procedure looks like this:
1. Developers commit all new work to the trunk. Day-to-day changes are committed to / t r unk: new features, bug fixes, and so
on.

2. Thetrunk is copied to a “ release” branch. When the team thinks the software is ready for release (say, a1.0 release), / t r unk
might be copied to/ br anches/ 1. 0.

3. Teams continue to work in parallel. One team begins rigorous testing of the release branch, while another team continues new
work (say, for version 2.0) on/ t r unk. If bugs are discovered in either location, fixes are ported back and forth as necessary.
At some point, however, even that process stops. The branch is“frozen” for final testing right before arelease.

4. The branch is tagged and released. When testing is complete, / br anches/ 1. 0 iscopiedto/t ags/ 1. 0. 0 as areference
snapshot. Thetag is packaged and rel eased to customers.

5. The branch is maintained over time. While work continueson / t r unk for version 2.0, bug fixes continue to be ported from /

trunk to/ branches/ 1. 0. When enough bug fixes have accumulated, management may decide to do a 1.0.1 release: /
branches/ 1. O iscopiedto/ t ags/ 1. 0. 1, and thetag is packaged and released.

This entire process repeats as the software matures: when the 2.0 work is complete, a new 2.0 release branch is created, tested,

135

Branching and Merging

tagged, and eventually released. After some years, the repository ends up with a number of release branches in “maintenance’
mode, and a number of tags representing final shipped versions.

Feature Branches

A feature branch is the sort of branch that's been the dominant example in this chapter (the one you've been working on while
Sally continues to work on / t r unk). It's a temporary branch created to work on a complex change without interfering with the
stability of / t r unk. Unlike release branches (which may need to be supported forever), feature branches are born, used for a
while, merged back to the trunk, and then ultimately deleted. They have a finite span of usefulness.

Again, project policies vary widely concerning exactly when it's appropriate to create a feature branch. Some projects never use
feature branches at all: commitsto / t r unk are a free-for-all. The advantage to this system is that it's simple—nobody needs to
learn about branching or merging. The disadvantage is that the trunk code is often unstable or unusable. Other projects use
branches to an extreme: no change is ever committed to the trunk directly. Even the most trivial changes are created on a short-
lived branch, carefully reviewed, and merged to the trunk. Then the branch is deleted. This system guarantees an exceptionally
stable and usable trunk at all times, but at the cost of tremendous process overhead.

Most projects take a middle-of-the-road approach. They commonly insist that / t r unk compile and pass regression tests at all
times. A feature branch is required only when a change requires alarge number of destabilizing commits. A good rule of thumb is
to ask this question: if the developer worked for daysin isolation and then committed the large change all at once (so that / t r unk
were never destabilized), would it be too large a change to review? |f the answer to that question is “yes,” the change should be de-
veloped on afeature branch. Asthe developer commits incremental changes to the branch, they can be easily reviewed by peers.

Finally, there's the issue of how to best keep afeature branch in “sync” with the trunk as work progresses. As we mentioned earlier,
there's a great risk to working on a branch for weeks or months; trunk changes may continue to pour in, to the point where the two
lines of development differ so greatly that it may become a nightmare trying to merge the branch back to the trunk.

This situation is best avoided by regularly merging trunk changes to the branch. Make up a policy: once a week, merge the last
week's worth of trunk changes to the branch.

When you are eventually ready to merge the “synchronized” feature branch back to the trunk, begin by doing a final merge of the
latest trunk changes to the branch. When that's done, the latest versions of branch and trunk are absolutely identical except for your
branch changes. Y ou then merge back with the - - r ei nt egr at e option:

$ cd trunk-worki ng- copy

$ svn update
Updating '."':
At revision 1910.

$ svn nerge --reintegrate ~/cal ¢/ branches/nybranch

--- Merging differences between repository URLs into '
U real.c

U i nteger.c

A newdi rectory

A newdi rectory/ newfil e

u .

Another way of thinking about this pattern is that your weekly sync of trunk to branch is analogous to running svn update in a
working copy, while the final merge step is analogous to running svn commit from aworking copy. After all, what else is a work-
ing copy but avery shallow private branch? It's a branch that's capable of storing only one change at atime.

Vendor Branches

136

Branching and Merging

Asis especially the case when developing software, the data that you maintain under version control is often closely related to, or
perhaps dependent upon, someone else's data. Generally, the needs of your project will dictate that you stay as up to date as pos-
sible with the data provided by that external entity without sacrificing the stability of your own project. This scenario plays itself
out al the time—anywhere that the information generated by one group of people has a direct effect on that which is generated by
another group.

For example, software developers might be working on an application that makes use of a third-party library. Subversion has just
such a relationship with the Apache Portable Runtime (APR) library (see the section called “The Apache Portable Runtime Lib-
rary”). The Subversion source code depends on the APR library for all its portability needs. In earlier stages of Subversion's devel-
opment, the project closaly tracked APR's changing API, always sticking to the “bleeding edge” of the library's code churn. Now
that both APR and Subversion have matured, Subversion attempts to synchronize with APR's library APl only at well-tested, stable
release points.

Now, if your project depends on someone else's information, you could attempt to synchronize that information with your own in
several ways. Most painfully, you could issue oral or written instructions to all the contributors of your project, telling them to
make sure they have the specific versions of that third-party information that your project needs. If the third-party information is
maintained in a Subversion repository, you could also use Subversion's externals definitions to effectively “pin down” specific ver-
sions of that information to some location in your own working copy (see the section called “ Externals Definitions”).

But sometimes you want to maintain custom modifications to third-party code in your own version control system. Returning to the
software development example, programmers might need to make modifications to that third-party library for their own purposes.
These modifications might include new functionality or bug fixes, maintained internally only until they become part of an official
release of the third-party library. Or the changes might never be relayed back to the library maintainers, existing solely as custom
tweaks to make the library further suit the needs of the software devel opers.

Now you face an interesting situation. Y our project could house its custom modifications to the third-party datain some digointed
fashion, such as using patch files or full-fledged aternative versions of files and directories. But these quickly become maintenance
headaches, requiring some mechanism by which to apply your custom changes to the third-party code and necessitating regenera-
tion of those changes with each successive version of the third-party code that you track.

The solution to this problem is to use vendor branches. A vendor branch is a directory tree in your own version control system that
contains information provided by a third-party entity, or vendor. Each version of the vendor's data that you decide to absorb into
your project is called avendor drop.

Vendor branches provide two benefits. First, by storing the currently supported vendor drop in your own version control system,
you ensure that the members of your project never need to question whether they have the right version of the vendor's data. They
simply receive that correct version as part of their regular working copy updates. Second, because the data lives in your own Sub-
version repository, you can store your custom changes to it in-place—you have no more need of an automated (or worse, manual)
method for swapping in your customizations.

General Vendor Branch Management Procedure

Managing vendor branches generally works like this: first, you create a top-level directory (such as/ vendor) to hold the vendor
branches. Then you import the third-party code into a subdirectory of that top-level directory. Y ou then copy that subdirectory into
your main development branch (e.g., / t r unk) at the appropriate location. Y ou always make your local changes in the main devel-
opment branch. With each new release of the code you are tracking, you bring it into the vendor branch and merge the changes into
/ t r unk, resolving whatever conflicts occur between your local changes and the upstream changes.

An example will help to clarify this algorithm. We'll use a scenario where your development team is creating a calculator program
that links against a third-party complex number arithmetic library, libcomplex. We'll begin with the initial creation of the vendor
branch and the import of the first vendor drop. We'l call our vendor branch directory | i bconpl ex, and our code drops will go
into a subdirectory of our vendor branch called cur r ent . And since svn import creates all the intermediate parent directories it
needs, we can actually accomplish both of these steps with a single command:

$ svn inport /path/to/libconplex-1.0 \
http://svn. exanpl e. con repos/vendor /Il ibconpl ex/ current \

137

Branching and Merging

-m"inporting initial 1.0 vendor drop"

We now have the current version of the libcomplex source code in/ vendor /| i bconpl ex/ curr ent . Now, we tag that ver-
sion (see the section called “Tags’) and then copy it into the main development branch. Our copy will create a new directory called
i bconpl ex inour existing cal ¢ project directory. It isin this copied version of the vendor data that we will make our custom-
izations:

$ svn copy http://svn.exanpl e.com repos/vendor/|ibconpl ex/current \
http://svn. exanpl e. coni repos/ vendor/ | i bconplex/ 1.0 \
-m "tagging |ibconplex-1.0"

$ svn copy http://svn.exanpl e.com repos/vendor/|ibconplex/1.0 \
http://svn. exanpl e. con repos/cal c/li bconpl ex \
-m*"bringing libconplex-1.0 into the main branch"

We check out our project's main branch—which now includes a copy of the first vendor drop—and we get to work customizing the
libcomplex code. Before we know it, our modified version of libcomplex is now completely integrated into our calculator
program.i1

A few weeks later, the developers of libcomplex release anew version of their library—version 1.1—which contains some features
and functionality that we really want. We'd like to upgrade to this new version, but without losing the customizations we made to
the existing version. What we essentially would like to do is to replace our current baseline version of libcomplex 1.0 with a copy
of libcomplex 1.1, and then re-apply the custom modifications we previously made to that library to the new version. But we actu-
ally approach the problem from the other direction, applying the changes made to libcomplex between versions 1.0 and 1.1 to our
modified copy of it.

To perform this upgrade, we check out a copy of our vendor branch and replace the code in the cur r ent directory with the new
libcomplex 1.1 source code. We quite literally copy new files on top of existing files, perhaps exploding the libcomplex 1.1 release
tarball atop our existing files and directories. The goal here is to make our cur r ent directory contain only the libcomplex 1.1
code and to ensure that all that code is under version control. Oh, and we want to do this with as little version control history dis-
turbance as possible.

After replacing the 1.0 code with 1.1 code, svn status will show files with local modifications as well as, perhaps, some unver-
sioned files. If we did what we were supposed to do, the unversioned files are only those new files introduced in the 1.1 release of
libcomplex—we run svn add on those to get them under version control. If the 1.1 code no longer has certain files that were in the
1.0 tree, it may be hard to notice them; you'd have to compare the two trees with some external tool and then svn delete any files
present in 1.0 but not in 1.1. (Although it might also be just fine to let these same files live on in unused obscurity!) Finaly, once
our cur r ent working copy contains only the libcomplex 1.1 code, we commit the changes we made to get it looking that way.

Our cur r ent branch now contains the new vendor drop. We tag the new version as 1.1 (in the same way we previously tagged

the version 1.0 vendor drop), and then merge the differences between the tag of the previous version and the new current version
into our main development branch:

$ cd wor ki ng-copi es/cal ¢

$ svn nerge ~/vendor/libconplex/1.0 \
N vendor /Il ibconpl ex/current \
i bconpl ex

...# resolve all the conflicts between their changes and our changes

"And is entirely bug-free, of course!

138

Branching and Merging

$ svn commit -m"nerging libconplex-1.1 into the main branch"

In the trivial use case, the new version of our third-party tool would look, from a files-and-directories point of view, just like the
previous version. None of the libcomplex source files would have been deleted, renamed, or moved to different |ocations—the new
version would contain only textual modifications against the previous one. In a perfect world, our modifications would apply
cleanly to the new version of the library, with absolutely no complications or conflicts.

But things aren't aways that simple, and in fact it is quite common for source files to get moved around between releases of soft-
ware. This complicates the process of ensuring that our modifications are till valid for the new version of code, and things can
quickly degrade into a situation where we have to manually re-create our customizations in the new version. Once Subversion
knows about the history of a given source file—including all its previous locations—the process of merging in the new version of
the library is pretty simple. But we are responsible for telling Subversion how the source file layout changed from vendor drop to
vendor drop.

svn_load_dirs.pl

Vendor drops that contain more than a few deletes, additions, and moves complicate the process of upgrading to each successive
version of the third-party data. So Subversion suppliesthe svn_load_dirs.pl script to assist with this process. This script automates
the importing steps we mentioned in the general vendor branch management procedure to make sure mistakes are minimized. Y ou
will till be responsible for using the merge commands to merge the new versions of the third-party data into your main develop-
ment branch, but svn_load_dirs.pl can help you more quickly and easily arrive at that stage.

In short, svn_load_dirs.pl is an enhancement to svn import that has several important characteristics:
* It can berun at any point in time to bring an existing directory in the repository to exactly match an external directory, perform-
ing all the necessary adds and deletes, and optionally performing moves, too.

* |t takes care of complicated series of operations between which Subversion requires an intermediate commit—such as before re-
naming afile or directory twice.

* It will optionally tag the newly imported directory.

« It will optionally add arbitrary properties to files and directories that match aregular expression.

svn_load_dirs.pl takes three mandatory arguments. The first argument is the URL to the base Subversion directory to work in.
This argument is followed by the URL—relative to the first argument—into which the current vendor drop will be imported. Fi-
nally, the third argument is the local directory to import. Using our previous example, atypical run of svn_load_dirs.pl might look
likethis:

$ svn_load_dirs.pl http://svn.exanpl e.conirepos/vendor/|ibconplex \
current \
/path/to/libconmplex-1.1

You can indicate that you'd like svn_load_dirs.pl to tag the new vendor drop by passing the -t command-line option and specify-
ing atag name. Thistag is another URL relative to the first program argument.

139

Branching and Merging

$ svn_load dirs.pl -t libconplex-1.1 \
http://svn. exanpl e. conf repos/ vendor/ | i bconpl ex \
current \

/path/to/libconmplex-1.1

When you run svn_load_dirs.pl, it examines the contents of your existing “current” vendor drop and compares them with the pro-
posed new vendor drop. In the trivial case, no files will be in one version and not the other, and the script will perform the new im-
port without incident. If, however, there are discrepancies in the file layouts between versions, svn_load_dirs.pl will ask you how
to resolve those differences. For example, you will have the opportunity to tell the script that you know that the file mat h. ¢ in
version 1.0 of libcomplex was renamed to ari t hneti c. ¢ in libcomplex 1.1. Any discrepancies not explained by moves are
treated as regular additions and deletions.

The script also accepts a separate configuration file for setting properties on added files and directories which match a regular ex-
pression. This configuration file is specified to svn_load_dirs.pl using the - p command-line option. Each line of the configuration
file is a whitespace-delimited set of two or four values. a Perl-style regular expression against which to match the added path, a
control keyword (either br eak or cont), and then optionally a property hame and value.

\. png$ br eak svn: m nme-type i mage/ png

\.] pe?g$ br eak svn: m me-type i mage/ | peg

\. mBu$ cont svn: m ne-type audi o/ x- npegur |
\. nBu$ br eak svn: eol -style LF

C* br eak svn: eol -styl e native

For each added path, the configured property changes whose regular expression matches the path are applied in order, unless the
control specification is br eak (which means that no more property changes should be applied to that path). If the control specific-
ation iscont —an abbreviation for cont i nue—matching will continue with the next line of the configuration file.

Any whitespace in the regular expression, property name, or property value must be surrounded by either single or double quotes.
Y ou can escape quotes that are not used for wrapping whitespace by preceding them with a backslash (\) character. The backslash
escapes only quotes when parsing the configuration file, so do not protect any other characters beyond what is necessary for the
regular expression.

Summary

We covered alot of ground in this chapter. We discussed the concepts of tags and branches and demonstrated how Subversion im-
plements these concepts by copying directories with the svn copy command. We showed how to use svn merge to copy changes
from one branch to another or roll back bad changes. We went over the use of svn switch to create mixed-location working copies.
And we talked about how one might manage the organization and lifetimes of branchesin arepository.

Remember the Subversion mantra: branches and tags are cheap. So don't be afraid to use them when needed!

As a helpful reminder of all the operations we discussed, here is handy reference table you can consult as you begin to make use of
branches.

Table 4.1. Branching and merging commands

Action Command
Create abranch or tag svn copy URL1 URL2
Switch aworking copy to a branch or tag svn switch URL

140

Branching and Merging

Action

Command

Synchronize a branch with trunk

svn nmerge trunkURL; svn conmit

See merge history or eligible changesets

svn mergei nfo SOURCE TARGET

Merge a branch back into trunk

mt

svn merge --reintegrate branchURL; svn com

Merge one specific change

svn merge -c¢ REV URL; svn conmit

Merge arange of changes

svn nmerge -r REV1: REV2 URL; svn commt

Block a change from automatic merging

svh nerge -c REV --record-only URL;
conmi t

svn

Preview amerge

svn nerge URL --dry-run

Abandon merge results

svn revert -R .

Resurrect something from history

svn copy URL@REV | ocal PATH

Undo a committed change

svn nerge -c¢ -REV URL; svn comit

Examine merge-sensitive history

svn log -g; svn blane -g

Create atag from aworking copy

svn copy . tagURL

Rearrange a branch or tag

svn nove URL1 URL2

Remove a branch or tag

svn del ete URL

141

Chapter 5. Repository Administration

The Subversion repository is the central storehouse of all your versioned data. As such, it becomes an obvious candidate for al the
love and attention an administrator can offer. While the repository is generally a low-maintenance item, it is important to under-
stand how to properly configure and care for it so that potential problems are avoided, and so actual problems are safely resolved.

In this chapter, we'll discuss how to create and configure a Subversion repository. We'll aso talk about repository maintenance,
providing examples of how and when to use various related tools provided with Subversion. We'll address some common questions
and mistakes and give some suggestions on how to arrange the data in the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under version control (i.e., via a Subversion
client), you can skip this chapter altogether. However, if you are, or wish to become, a Subversion repository administrator,” this
chapter isfor you.

The Subversion Repository, Defined

Before jJumping into the broader topic of repository administration, let's further define what a repository is. How does it look? How
does it feel? Does it take its tea hot or iced, sweetened, and with lemon? As an administrator, you'll be expected to understand the
composition of a repository both from a literal, OS-level perspective—how a repository looks and acts with respect to non-
Subversion tools—and from alogical perspective—dealing with how data is represented inside the repository.

Seen through the eyes of atypical file browser application (such as Windows Explorer) or command-line based filesystem naviga-
tion tools, the Subversion repository is just another directory full of stuff. There are some subdirectories with human-readable con-
figuration files in them, some subdirectories with some not-so-human-readable data files, and so on. As in other areas of the Sub-
version design, modularity is given high regard, and hierarchical organization is preferred to cluttered chaos. So a shallow glance
into atypical repository from a nuts-and-bolts perspective is sufficient to reveal the basic components of the repository:

$ |Is repos
conf/ db/ format hooks/ |ocks/ ~README. t xt

Here's a quick fly-by overview of what exactly you're seeing in this directory listing. (Don't get bogged down in the termino-
logy—detailed coverage of these components exists elsewhere in this and other chapters.)

conf
A directory containing configuration files

db
The data store for all of your versioned data

format
A filethat contains a single integer that indicates the version number of the repository layout

hooks
A directory full of hook script templates (and hook scripts themselves, once you've installed some)

locks

This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious realm beyond the working copy where every-
one's data hangs out.

142

Repository Administration

A directory for Subversion's repository lock files, used for tracking accessors to the repository

README.txt
A file whose contents merely inform its readers that they are looking at a Subversion repository

used this directory to store information about WebDAV activities—mappings of high-level WebDAV protocol con-
cepts to Subversion commit transactions. Subversion 1.5 changed that behavior, moving ownership of the activities
directory, and the ability to configure its location, into nod_dav_svn itself. Now, new repositories will not neces-
sarily have adav subdirectory unless mod_dav_svn isin use and hasn't been configured to store its activities data-
base elsewhere. See the section called “Directives’ in Chapter 9, Subversion Complete Reference for more informa
tion.

<> Prior to Subversion 1.5, the on-disk repository structure also always contained a dav subdirectory. nod_dav_svn

Of course, when accessed via the Subversion libraries, this otherwise unremarkable collection of files and directories suddenly be-
comes an implementation of avirtual, versioned filesystem, complete with customizable event triggers. This filesystem has its own
notions of directories and files, very similar to the notions of such things held by real filesystems (such as NTFS, FAT32, ext3,
etc.). But thisis a special filesystem—it hangs these directories and files from revisions, keeping all the changes you've ever made
to them safely stored and forever accessible. Thisiswhere the entirety of your versioned data lives.

Strategies for Repository Deployment

Due largely to the simplicity of the overall design of the Subversion repository and the technologies on which it relies, creating and
configuring a repository are fairly straightforward tasks. There are a few preliminary decisions you'll want to make, but the actual
work involved in any given setup of a Subversion repository is pretty basic, tending toward mindless repetition if you find yoursel f
setting up multiples of these things.

Some things you'll want to consider beforehand, though, are:

» What data do you expect to live in your repository (or repositories), and how will that data be organized?

Where will your repository live, and how will it be accessed?

» What types of access control and repository event reporting do you need?

Which of the available types of data store do you want to use?

In this section, well try to help you answer those questions.

Planning Your Repository Organization

While Subversion allows you to move around versioned files and directories without any loss of information, and even provides
ways of moving whole sets of versioned history from one repository to another, doing so can greatly disrupt the workflow of those
who access the repository often and come to expect things to be at certain locations. So before creating a new repository, try to peer
into the future a bit; plan ahead before placing your data under version control. By conscientiously “laying out” your repository or
repositories and their versioned contents ahead of time, you can prevent many future headaches.

Let's assume that as repository administrator, you will be responsible for supporting the version control system for several projects.
Your first decision is whether to use a single repository for multiple projects, or to give each project its own repository, or some
compromise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of duplicated maintenance. A single
repository means that there is one set of hook programs, one thing to routinely back up, one thing to dump and load if Subversion
releases an incompatible new version, and so on. Also, you can move data between projects easily, without losing any historical

143

Repository Administration

versioning information.

The downside of using asingle repository is that different projects may have different requirementsin terms of the repository event
triggers, such as needing to send commit notification emails to different mailing lists, or having different definitions about what
does and does not constitute a legitimate commit. These aren't insurmountable problems, of course—it just means that al of your
hook scripts have to be sensitive to the layout of your repository rather than assuming that the whole repository is associated with a
single group of people. Also, remember that Subversion uses repository-global revision numbers. While those numbers don't have
any particular magical powers, some folks still don't like the fact that even though no changes have been made to their project
lately, the youngest revision number for the repository keeps climbing because other projects are actively adding new revisions.

A middle-ground approach can be taken, too. For example, projects can be grouped by how well they relate to each other. You
might have a few repositories with a handful of projects in each repository. That way, projects that are likely to want to share data
can do so easily, and as new revisions are added to the repository, at least the developers know that those new revisions are at least
remotely related to everyone who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want to think about directory hierarchies
within the repositories themselves. Because Subversion uses regular directory copies for branching and tagging (see Chapter 4,
Branching and Merging), the Subversion community recommends that you choose a repository location for each project root—the
“topmost” directory that contains data related to that project—and then create three subdirectories beneath that root: t r unk, mean-
ing the directory under which the main project development occurs; br anches, which is a directory in which to create various
named branches of the main development line; and t ags, which is a collection of tree snapshots that are created, and perhaps des-
troyed, but never changed.3

For example, your repository might look like this:

cal c/

trunk/

t ags/

br anches/
cal endar/

t runk/

t ags/

br anches/
spr eadsheet/

t runk/

t ags/

br anches/

Note that it doesn't matter where in your repository each project root is. If you have only one project per repository, the logical
place to put each project root is at the root of that project's respective repository. If you have multiple projects, you might want to
arrange them in groups inside the repository, perhaps putting projects with similar goals or shared code in the same subdirectory, or
maybe just grouping them alphabetically. Such an arrangement might look like this:

utils/
cal c/
trunk/
t ags/
br anches/

2Whether founded in ignorance or in poorly considered concepts about how to derive legitimate software development metrics, global revision numbers are a silly
thing to fear, and not the kind of thing you should weigh when deciding how to arrange your projects and repositories.
®Thet r unk, t ags, and br anches trio is sometimes referred to as “ the TTB directories.”

144

Repository Administration

cal endar/
t runk/
t ags/
br anches/

of ficel
spreadsheet/
t runk/
t ags/
branches/

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a particular layout—in its eyes, a dir-
ectory is a directory is a directory. Ultimately, you should choose the repository arrangement that meets the needs of the people
who work on the projects that live there.

In the name of full disclosure, though, welll mention another very common layout. In this layout, the t r unk, t ags, and
br anches directories livein the root directory of your repository, and your projects are in subdirectories beneath those, like so:

trunk/
cal c/
cal endar/
spreadsheet/

t ags/
cal c/
cal endar/
spr eadsheet/

br anches/
cal c/
cal endar/
spreadsheet/

There's nothing particularly incorrect about such a layout, but it may or may not seem as intuitive for your users. Especially in
large, multiproject situations with many users, those users may tend to be familiar with only one or two of the projects in the repos-
itory. But the projects-as-branch-siblings approach tends to deemphasize project individuality and focus on the entire set of
projects as a single entity. That's a social issue, though. We like our originally suggested arrangement for purely practical reas-
ons—it's easier to ask about (or modify, or migrate elsewhere) the entire history of a single project when there's a single repository
path that holds the entire history—past, present, tagged, and branched—for that project and that project alone.

Deciding Where and How to Host Your Repository

Before creating your Subversion repository, an obvious question you'll need to answer is where the thing is going to live. Thisis
strongly connected to myriad other questions involving how the repository will be accessed (via a Subversion server or directly),
by whom (users behind your corporate firewall or the whole world out on the open Internet), what other services you'll be provid-
ing around Subversion (repository browsing interfaces, email-based commit natification, etc.), your data backup strategy, and so
on.

We cover server choice and configuration in Chapter 6, Server Configuration, but the point we'd like to briefly make hereis simply
that the answers to some of these other questions might have implications that force your hand when deciding where your reposit-
ory will live. For example, certain deployment scenarios might require accessing the repository via a remote filesystem from mul-

145

Repository Administration

tiple computers, in which case (as you'll read in the next section) your choice of a repository backend data store turns out not to be
achoice at al because only one of the available backends will work in this scenario.

Addressing each possible way to deploy Subversion is both impossible and outside the scope of this book. We simply encourage
you to evaluate your options using these pages and other sources as your reference material and to plan ahead.

Choosing a Data Store

Subversion provides two options for the type of underlying data store—often referred to as “the backend” or, somewhat confus-
ingly, “the (versioned) filesystem” —that each repository uses. One type of data store keeps everything in a Berkeley DB (or BDB)
database environment; repositories that use this type are often referred to as being “BDB-backed.” The other type stores datain or-
dinary flat files, using a custom format. Subversion developers have adopted the habit of referring to this latter data storage mech-
anism as FSFS'—a versioned filesystem implementation that uses the native OS filesystem directly—rather than via a database lib-
rary or some other abstraction layer—to store data.

Table 5.1, “Repository data store comparison” gives a comparative overview of Berkeley DB and FSFS repositories.

Table5.1. Repository data store comparison

Category Feature Berkeley DB FSFS
Reliability Dataintegrity When properly deployed, ex-|Older versions had some rarely
tremely reliable; Berkeley DB |demonstrated, but data-
4.4 brings auto-recovery destroying bugs
Sensitivity to interruptions Very; crashes and permission|Quite insensitive

problems can leave the data-
base “wedged,” requiring
journaled recovery procedures

Accessibility Usable from aread-only mount |No Yes
Platform-independent storage |No Yes
Usable over network filesys-|Generaly, no Yes
tems

Group permissions handling Sensitive to user umask prob-|Works around umask problems
lems; best if accessed by only

one user
Scalability Repository disk usage Larger (especidly if logfiles|Smaller
aren't purged)

Number of revision trees Database; no problems Some older native filesystems
don't scale well with thousands
of entriesin asingle directory

Directories with many files Slower Faster

Performance Checking out latest revision No meaningful difference No meaningful difference
Large commits Slower overall, but cost is|Faster overal, but finaization
amortized acrossthe lifetime of [delay may cause client
the commit timeouts

There are advantages and disadvantages to each of these two backend types. Neither of them is more “official” than the other,
though the newer FSFS is the default data store as of Subversion 1.2. Both are reliable enough to trust with your versioned data.
But as you can see in Table 5.1, “Repository data store comparison”, the FSFS backend provides quite a bit more flexibility in
terms of its supported deployment scenarios. More flexibility means you have to work a little harder to find ways to deploy it in-
correctly. Those reasons—plus the fact that not using Berkeley DB means there's one fewer component in the system—Ilargely ex-

40ften pronounced “fuzz-fuzz,” if Jack Repenning has anything to say about it. (This book, however, assumes that the reader is thinking “ eff-ess-eff-ess.”)
146

Repository Administration

plain why today almost everyone uses the FSFS backend when creating new repositories.

Fortunately, most programs that access Subversion repositories are blissfully ignorant of which backend data store isin use. And
you aren't even necessarily stuck with your first choice of a data store—in the event that you change your mind later, Subversion
provides ways of migrating your repository’s data into another repository that uses a different backend data store. We talk more
about that later in this chapter.

The following subsections provide a more detailed look at the available backend data store types.

Berkeley DB

When the initial design phase of Subversion was in progress, the developers decided to use Berkeley DB for a variety of reasons,
including its open source license, transaction support, reliability, performance, API simplicity, thread safety, support for cursors,
and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple processes accessing your Subversion
repositories don't have to worry about accidentally clobbering each other's data. The isolation provided by the transaction system is
such that for any given operation, the Subversion repository code sees a static view of the database—not a database that is con-
stantly changing at the hand of some other process—and can make decisions based on that view. If the decision made happens to
conflict with what another process is doing, the entire operation is rolled back as though it never happened, and Subversion grace-
fully retries the operation against a new, updated (and yet still static) view of the database.

Another great feature of Berkeley DB is hot backups—the ability to back up the database environment without taking it “ offline.”
Well discuss how to back up your repository later in this chapter (in the section called “ Repository Backup”), but the benefits of
being able to make fully functional copies of your repositories without any downtime should be obvious.

Berkeley DB is also a very reliable database system when properly used. Subversion uses Berkeley DB's logging facilities, which
means that the database first writes to on-disk logfiles a description of any modifications it is about to make, and then makes the
modification itself. Thisisto ensure that if anything goes wrong, the database system can back up to a previous checkpoint—a loc-
ation in the logfiles known not to be corrupt—and replay transactions until the data is restored to a usable state. See the section
called “Managing Disk Space” later in this chapter for more about Berkeley DB logfiles.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB. First, Berkeley DB environments are
not portable. You cannot simply copy a Subversion repository that was created on a Unix system onto a Windows system and ex-
pect it to work. While much of the Berkeley DB database format is architecture-independent, other aspects of the environment are
not. Second, Subversion uses Berkeley DB in a way that will not operate on Windows 95/98 systems—if you need to house a
BDB-backed repository on a Windows machine, stick with Windows 2000 or later.

While Berkeley DB promises to behave correctly on network shares that meet a particular set of spec:ific:ations,5 most networked
filesystem types and appliances do not actually meet those requirements. And in no case can you alow a BDB-backed repository
that resides on a network share to be accessed by multiple clients of that share at once (which quite often is the whole point of hav-
ing the repository live on a network share in the first place).

If you attempt to use Berkeley DB on a noncompliant remote filesystem, the results are unpredictable—you may see
mysterious errors right away, or it may be months before you discover that your repository database is subtly corrup-
ted. Y ou should strongly consider using the FSFS data store for repositories that need to live on a network share.

Finally, because Berkeley DB is alibrary linked directly into Subversion, it's more sensitive to interruptions than a typical relation-
a database system. Most SQL systems, for example, have a dedicated server process that mediates al accessto tables. If a program
accessing the database crashes for some reason, the database daemon notices the lost connection and cleans up any mess left be-
hind. And because the database daemon is the only process accessing the tables, applications don't need to worry about permission
conflicts. These things are not the case with Berkeley DB, however. Subversion (and programs using Subversion libraries) access
the database tables directly, which means that a program crash can leave the database in a temporarily inconsistent, inaccessible
state. When this happens, an administrator needs to ask Berkeley DB to restore to a checkpoint, which is a bit of an annoyance.

5Berkeley DB requires that the underlying filesystem implement strict POSIX locking semantics, and more importantly, the ability to map files directly into process
memory.

147

Repository Administration

Other things can cause a repository to “wedge” besides crashed processes, such as programs conflicting over ownership and per-
missions on the database files.

Berkeley DB 4.4 brings (to Subversion 1.4 and later) the ability for Subversion to automatically and transparently re-

/ cover Berkeley DB environments in need of such recovery. When a Subversion process attaches to a repository's
Berkeley DB environment, it uses some process accounting mechanisms to detect any unclean disconnections by pre-
vious processes, performs any necessary recovery, and then continues on as though nothing happened. This doesn't
completely eliminate instances of repository wedging, but it does drastically reduce the amount of human interaction
required to recover from them.

So while a Berkeley DB repository is quite fast and scalable, it's best used by a single server process running as one user—such as
Apache's httpd or svnserve (see Chapter 6, Server Configuration)—rather than accessing it as many different usersviafil e://
or svn+ssh:// URLs. If you're accessing a Berkeley DB repository directly as multiple users, be sure to read the section called
“Supporting Multiple Repository Access Methods™ later in this chapter.

FSFS

In mid-2004, a second type of repository storage system—one that doesn't use a database at all—came into being. An FSFS repos-
itory stores the changes associated with arevisionin asinglefile, and so all of arepository's revisions can be found in a single sub-
directory full of numbered files. Transactions are created in separate subdirectories as individua files. When compl ete, the transac-
tion file is renamed and moved into the revisions directory, thus guaranteeing that commits are atomic. And because arevision file
is permanent and unchanging, the repository aso can be backed up while “hot,” just like a BDB-backed repository.

Revision files and shards

FSFS repositories contain files that describe the changes made in a single revision, and files that contain the revision proper-
ties associated with a single revision. Repositories created in versions of Subversion prior to 1.5 keep these files in two dir-
ectories—one for each type of file. As new revisions are committed to the repository, Subversion drops more files into these
two directories—aover time, the number of these files in each directory can grow to be quite large. This has been observed to
cause performance problems on certain network-based filesystems.

Subversion 1.5 creates FSFS-backed repositories using a slightly modified layout in which the contents of these two director-
ies are sharded, or scattered across several subdirectories. This can greatly reduce the time it takes the system to locate any
one of these files, and therefore increases the overall performance of Subversion when reading from the repository.

Subversion 1.6 and later takes the sharded layout one step further, allowing administrators to optionally pack each of their re-
pository shards up into a single multi-revision file. This can have both performance and disk usage benefits. See the section
called “Packing FSFS filesystems” for more information.

The FSFS revision files describe arevision's directory structure, file contents, and deltas against files in other revision trees. Unlike
a Berkeley DB database, this storage format is portable across different operating systems and isn't sensitive to CPU architecture.
Because no journaling or shared-memory files are being used, the repository can be safely accessed over a network filesystem and
examined in aread-only environment. The lack of database overhead also means the overall repository sizeisahbit smaller.

FSFS has different performance characteristics, too. When committing a directory with a huge number of files, FSFS is able to
more quickly append directory entries. On the other hand, FSFS has a longer delay when finalizing a commit while it performs
tasks that the BDB backend amortizes across the lifetime of the commit, which could in extreme cases cause clients to time out
while waiting for aresponse.

The most important distinction, however, is FSFS's imperviousness to wedging when something goes wrong. If a process using a
Berkeley DB database runs into a permissions problem or suddenly crashes, the database can be left in an unusable state until an
administrator recoversit. If the same scenarios happen to a process using an FSFS repository, the repository isn't affected at all. At
worst, some transaction data s left behind.

148

Repository Administration

Creating and Configuring Your Repository

Earlier in this chapter (in the section called “ Strategies for Repository Deployment”), we looked at some of the important decisions
that should be made before creating and configuring your Subversion repository. Now, we finally get to get our hands dirty! In this
section, we'll see how to actually create a Subversion repository and configure it to perform custom actions when specia repository
events occur.

Creating the Repository

Subversion repository creation is an incredibly simple task. The svnadmin utility that comes with Subversion provides a subcom-
mand (svnadmin create) for doing just that.

$ # Create a repository
$ svnadm n create /var/svn/repos

Assuming that the parent directory / var / svn exists and that you have sufficient permissions to modify that directory, the previ-
ous command creates a new repository in the directory / var / svn/ r epos, and with the default filesystem data store (FSFS).
Y ou can explicitly choose the filesystem type using the - - f s- t ype argument, which accepts as a parameter either f sf s or bdb.

$ # Create an FSFS-backed repository
$ svnadmin create --fs-type fsfs /var/svn/repos

Create a Berkel ey-DB-backed repository
$ svnadm n create --fs-type bdb /var/svn/repos

After running this ssmple command, you have a Subversion repository. Depending on how users will access this new repository,
you might need to fiddle with its filesystem permissions. But since basic system administration is rather outside the scope of this
text, welll leave further exploration of that topic as an exercise to the reader.

The path argument to svnadmin is just a regular filesystem path and not a URL like the svn client program uses

_') when referring to repositories. Both svnadmin and svnlook are considered server-side utilities—they are used on the
machine where the repository resides to examine or modify aspects of the repository, and are in fact unable to per-
form tasks across a network. A common mistake made by Subversion newcomers is trying to pass URLs (even
“local” fil e:// ones) to these two programs.

Present in the db/ subdirectory of your repository is the implementation of the versioned filesystem. Y our new repository's ver-
sioned filesystem beginslife at revision 0, which is defined to consist of nothing but the top-level root (/) directory. Initially, revi-
sion 0 also has asingle revision property, svn: dat e, set to the time at which the repository was created.

Now that you have arepository, it's time to customize it.

149

Repository Administration

While some parts of a Subversion repository—such as the configuration files and hook scripts—are meant to be ex-
amined and modified manually, you shouldn't (and shouldn't need to) tamper with the other parts of the repository
“by hand.” The svnadmin tool should be sufficient for any changes necessary to your repository, or you can look to
third-party tools (such as Berkeley DB's tool suite) for tweaking relevant subsections of the repository. Do not at-
tempt manual manipulation of your version control history by poking and prodding around in your repository's data
storefiles!

Implementing Repository Hooks

A hook is a program triggered by some repository event, such as the creation of a new revision or the modification of an unver-
sioned property. Some hooks (the so-called “pre hooks”) run in advance of arepository operation and provide a means by which to
both report what is about to happen and prevent it from happening at al. Other hooks (the “post hooks”) run after the completion
of a repository event and are useful for performing tasks that examine—but don't modify—the repository. Each hook is handed
enough information to tell what that event is (or was), the specific repository changes proposed (or completed), and the username
of the person who triggered the event.

Thehooks subdirectory is, by default, filled with templates for various repository hooks:

$ |'s repos/ hooks/

post-comi t. t npl post - unl ock.tnpl pre-revprop-change. t npl
post -1 ock. t npl pre-comm t. t npl pre-unl ock. t npl

post - revprop-change. tnmpl pre-|ock. tnpl start-commt.tnpl

$

There is one template for each hook that the Subversion repository supports; by examining the contents of those template scripts,
you can see what triggers each script to run and what data is passed to that script. Also present in many of these templates are ex-
amples of how one might use that script, in conjunction with other Subversion-supplied programs, to perform common useful
tasks. To actually install a working hook, you need only place some executable program or script into the r epos/ hooks direct-
ory, which can be executed as the name (such as start-commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a Python program, a compiled C bin-
ary, or any number of other things) named exactly like the name of the hook. Of course, the template files are present for more than
just informational purposes—the easiest way to install a hook on Unix platformsisto simply copy the appropriate template fileto a
new file that lacks the . t npl extension, customize the hook's contents, and ensure that the script is executable. Windows,
however, uses file extensions to determine whether a program is executable, so you would need to supply a program whose base-
name is the name of the hook and whose extension is one of the special extensions recognized by Windows for executable pro-
grams, such as. exe for programsand . bat for batch files.

vironment variables are set at all, not even $PATH (or YPATHY under Windows). Because of this, many administrat-
ors are baffled when their hook program runs fine by hand, but doesn't work when run by Subversion. Be sure to ex-
plicitly set any necessary environment variables in your hook program and/or use absolute paths to programs.

o} For security reasons, the Subversion repository executes hook programs with an empty environment—that is, no en-

Subversion executes hooks as the same user who owns the process that is accessing the Subversion repository. In most cases, the
repository is being accessed via a Subversion server, so this user is the same user as whom the server runs on the system. The
hooks themselves will need to be configured with OS-level permissions that allow that user to execute them. Also, this means that
any programs or files (including the Subversion repository) accessed directly or indirectly by the hook will be accessed as the same
user. In other words, be alert to potential permission-related problems that could prevent the hook from performing the tasks it is
designed to perform.

There are several hooks implemented by the Subversion repository, and you can get details about each of them in the section called

150

Repository Administration

“Repository Hooks” in Chapter 9, Subversion Complete Reference. As a repository administrator, you'll need to decide which
hooks you wish to implement (by way of providing an appropriately named and permissioned hook program), and how. When you
make this decision, keep in mind the big picture of how your repository is deployed. For example, if you are using server configur-
ation to determine which users are permitted to commit changes to your repository, you don't need to do this sort of access control
viathe hook system.

There is no shortage of Subversion hook programs and scripts that are freely available either from the Subversion community itself
or elsewhere. These scripts cover a wide range of utility—basic access control, policy adherence checking, issue tracker integra-
tion, email- or syndication-based commit notification, and beyond. Or, if you wish to write your own, see Chapter 8, Embedding
Subversion.

While hook scripts can do almost anything, there is one dimension in which hook script authors should show re-
straint: do not modify a commit transaction using hook scripts. While it might be tempting to use hook scripts to auto-
matically correct errors, shortcomings, or policy violations present in the files being committed, doing so can cause
problems. Subversion keeps client-side caches of certain bits of repository data, and if you change a commit transac-
tion in thisway, those caches become indetectably stale. This inconsistency can lead to surprising and unexpected be-
havior. Instead of modifying the transaction, you should simply validate the transaction in the pr e- conmi t hook
and reject the commit if it does not meet the desired requirements. As a bonus, your users will learn the value of care-
ful, compliance-minded work habits.

Berkeley DB Configuration

A Berkeley DB environment is an encapsulation of one or more databases, lodfiles, region files, and configuration files. The
Berkeley DB environment has its own set of default configuration values for things such as the number of database locks allowed
to be taken out at any given time, the maximum size of the journaling logfiles, and so on. Subversion's filesystem logic additionally
chooses default values for some of the Berkeley DB configuration options. However, sometimes your particular repository, with its
unique collection of data and access patterns, might require a different set of configuration option values.

The producers of Berkeley DB understand that different applications and database environments have different requirements, so
they have provided a mechanism for overriding at runtime many of the configuration values for the Berkeley DB environment.
BDB checks for the presence of afile named DB_CONFI Gin the environment directory (namely, the repository's db subdirectory),
and parses the options found in that file. Subversion itself createsthis file when it creates the rest of the repository. Thefileinitially
contains some default options, as well as pointers to the Berkeley DB online documentation so that you can read about what those
options do. Of course, you are free to add any of the supported Berkeley DB options to your DB_CONFI Gfile. Just be aware that
while Subversion never attempts to read or interpret the contents of the file and makes no direct use of the option settings in it,
you'll want to avoid any configuration changes that may cause Berkeley DB to behave in a fashion that is at odds with what Sub-
version might expect. Also, changes made to DB_CONFI G won't take effect until you recover the database environment (using
svnadmin recover).

FSFS Configuration

As of Subversion 1.6, FSFS filesystems have several configurable parameters which an administrator can use to fine-tune the per-
formance or disk usage of their repositories. You can find these options—and the documentation for them—in the db/
fsfs. conf fileintherepository.

Repository Maintenance

Maintaining a Subversion repository can be daunting, mostly due to the complexities inherent in systems that have a database
backend. Doing the task well is all about knowing the tools—what they are, when to use them, and how. This section will intro-
duce you to the repository administration tools provided by Subversion and discuss how to wield them to accomplish tasks such as
repository data migration, upgrades, backups, and cleanups.

An Administrator's Toolkit

151

Repository Administration

Subversion provides a handful of utilities useful for creating, inspecting, modifying, and repairing your repository. Let's look more
closely at each of those tools. Afterward, we'll briefly examine some of the utilities included in the Berkeley DB distribution that
provide functionality specific to your repository's database backend not otherwise provided by Subversion's own tools.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the ability to create Subversion repositories,
this program allows you to perform several maintenance operations on those repositories. The syntax of svnadmin is similar to that
of other Subversion command-line programs:

$ svnadmin hel p

general usage: svnadm n SUBCOMWAND REPOS PATH [ARGS & OPTIONS ...]
Type 'svnadm n hel p <subcomand>' for help on a specific subcommand.
Type 'svnadmin --version' to see the programversion and FS nodul es.

Avai | abl e subcommands:
crasht est
create
deltify

Previoudly in this chapter (in the section called “ Creating the Repository”), we were introduced to the svnadmin create subcom-
mand. Most of the other svnadmin subcommands we will cover later in this chapter. And you can consult the section called
“svnadmin—Subversion Repository Administration” in Chapter 9, Subversion Complete Reference for a full rundown of subcom-
mands and what each of them offers.

svnlook

svnlook isatool provided by Subversion for examining the various revisions and transactions (which are revisions in the making)
in arepository. No part of this program attempts to change the repository. svnlook is typically used by the repository hooks for re-
porting the changes that are about to be committed (in the case of the pre-commit hook) or that were just committed (in the case of
the post-commit hook) to the repository. A repository administrator may use this tool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnl ook help

general usage: svnl ook SUBCOMVAND REPOS PATH [ARGS & OPTIONS ...]

Not e: any subcomand which takes the '--revision' and '--transaction'
options will, if invoked without one of those options, act on
the repository's youngest revision

Type 'svnl ook hel p <subcommand>'" for help on a specific subconmand.

Type 'svnlook --version' to see the programversion and FS nodul es.

Most of svnlook's subcommands can operate on either arevision or a transaction tree, printing information about the tree itself, or
how it differs from the previous revision of the repository. You usethe--revi sion (-r)and--transacti on (-t) options
to specify which revision or transaction, respectively, to examine. In the absence of both the --revision (-r) and -
-transacti on (-t) options, svnlook will examine the youngest (or HEAD) revision in the repository. So the following two
commands do exactly the same thing when 19 is the youngest revision in the repository located at / var / svn/ r epos:

152

Repository Administration

$ svnl ook info /var/svn/repos
$ svnl ook info /var/svn/repos -r 19

One exception to these rules about subcommands is the svnlook youngest subcommand, which takes no options and simply prints
out the repository's youngest revision number:

$ svnl ook youngest /var/svn/repos
19
$

transactions because transactions are usually either committed (in which case, you should access them as revision

O Keep in mind that the only transactions you can browse are uncommitted ones. Most repositories will have no such
/ withthe- - r evi si on (- r) option) or aborted and removed.

Output from svnlook is designed to be both human- and machine-parsable. Take, as an example, the output of the svnlook info
subcommand:

$ svnl ook info /var/svn/repos

sally

2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27

Added t he usual

3(53' eek tree.

The output of svnlook info consists of the following, in the order given:

1. Theauthor, followed by a newline
2. The date, followed by a newline
3. The number of charactersin the log message, followed by anewline

4. Thelog messageitself, followed by anewline

This output is human-readable, meaning items such as the datestamp are displayed using a textual representation instead of
something more obscure (such as the number of nanoseconds since the Tastee Freez guy drove by). But the output is also machine-
parsable—because the log message can contain multiple lines and be unbounded in length, svnlook provides the length of that
message before the message itself. This allows scripts and other wrappers around this command to make intelligent decisions about
the log message, such as how much memory to allocate for the message, or at least how many bytes to skip in the event that this
output is not the last bit of datain the stream.

svnlook can perform a variety of other queries: displaying subsets of bits of information we've mentioned previously, recursively
listing versioned directory trees, reporting which paths were modified in a given revision or transaction, showing textual and prop-
erty differences made to files and directories, and so on. See the section called “ svnlook—Subversion Repository Examination” in
Chapter 9, Subversion Complete Reference for afull reference of svnlook's features.

153

Repository Administration

svndumpfilter

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter provides a very particular brand of
useful functionality—the ability to quickly and easily modify streams of Subversion repository history data by acting as a path-
based filter.

The syntax of syndumpfilter isasfollows:

$ svndunpfilter help

general usage: svndunpfilter SUBCOMVAND [ARGS & OPTIONS ...]

Type 'svndunpfilter help <subconmand>' for help on a specific subcomand.
Type 'svndunpfilter --version' to see the program version.

Avai | abl e subcommands:
excl ude
i ncl ude
help (?, h)

There are only two interesting subcommands: svndumpfilter exclude and svndumpfilter include. They alow you to make the
choice between implicit or explicit inclusion of paths in the stream. Y ou can learn more about these subcommands and svndump-
filter's unique purpose later in this chapter, in the section called “Filtering Repository History”.

svnrdump

The svnrdump program is, to put it simply, essentially just network-aware flavors of the svnadmin dump and svnadmin load
subcommands, rolled up into a separate program.

$ svnrdunp hel p

general usage: svnrdunp SUBCOVWWAND URL [-r LOWER : UPPER]]

Type 'svnrdunp hel p <subcomand>' for help on a specific subcomrand.
Type 'svnrdunp --version' to see the program version and RA nodul es.

Avai | abl e subcommands:

dunp
| oad

help (?, h)

We discuss the use of svnrdump and the aforementioned svnadmin commands later in this chapter (see the section called
“Migrating Repository Data Elsewhere”).

svnsync

The svnsync program provides all the functionality required for maintaining a read-only mirror of a Subversion repository. The
program really has one job—to transfer one repository's versioned history into another repository. And while there are few ways to
do that, its primary strength is that it can operate remotely—the “source” and “sink”® repositories may be on different computers
from each other and from svnsync itself.

Asyou might expect, svnsync has a syntax that |ooks very much like every other program we've mentioned in this chapter:

50r isthat, the “sync”?

154

Repository Administration

$ svnsync hel p

general usage: svnsync SUBCOMVAND DEST URL [ARGS & OPTIONS .. .]
Type 'svnsync hel p <subcommand>'" for help on a specific subconmand.
Type 'svnsync --version' to see the programversion and RA nodul es.

Avai | abl e subcomuands:
initialize (init)
synchroni ze (sync)
copy-revprops
info
help (?, h)

Wetalk more about replicating repositories with svnsync later in this chapter (see the section called “ Repository Replication”).

fsfs-reshard.py

While not an official member of the Subversion toolchain, the fsfs-reshard.py script (found inthet ool s/ ser ver - si de direct-
ory of the Subversion source distribution) isa useful performance tuning tool for administrators of FSFS-backed Subversion repos-
itories. As described in the sidebar Revision files and shards, FSFS repositories use individual files to house information about
each revision. Sometimes these files al live in a single directory; sometimes they are sharded across many directories. But the neat
thing isthat the number of directories used to house these files is configurable. That's where fsfs-reshar d.py comesin.

fsfs-reshard.py reshuffles the repository's file structure into a new arrangement that reflects the requested number of sharding sub-
directories and updates the repository configuration to preserve this change. When used in conjunction with the svnadmin up-
grade command, thisis especialy useful for upgrading a pre-1.5 Subversion (unsharded) repository to the latest filesystem format
and sharding its data files (which Subversion will not automatically do for you). This script can also be used for fine-tuning an
already sharded repository.

Berkeley DB utilities

If you're using a Berkeley DB repository, al of your versioned filesystem's structure and data live in a set of database tables within
the db/ subdirectory of your repository. This subdirectory is a regular Berkeley DB environment directory and can therefore be
used in conjunction with any of the Berkeley database tools, typically provided as part of the Berkeley DB distribution.

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically needed for Subversion repositories
has been duplicated in the svnadmin tool. For example, svnadmin list-unused-dblogs and svhadmin list-dblogs perform a subset
of what is provided by the Berkeley db_archive utility, and svnadmin recover reflects the common use cases of the db_recover
utility.

However, there are still a few Berkeley DB utilities that you might find useful. The db_dump and db_load programs write and
read, respectively, a custom file format that describes the keys and valuesin a Berkeley DB database. Since Berkeley databases are
not portable across machine architectures, this format is a useful way to transfer those databases from machine to machine, irre-
spective of architecture or operating system. As we describe later in this chapter, you can also use svnadmin dump and svnadmin
load for similar purposes, but db_dump and db_load can do certain jobs just as well and much faster. They can also be useful if
the experienced Berkeley DB hacker needs to do in-place tweaking of the datain a BDB-backed repository for some reason, which
is something Subversion's utilities won't allow. Also, the db_stat utility can provide useful information about the status of your
Berkeley DB environment, including detailed statistics about the locking and storage subsystems.

For more information on the Berkeley DB tool chain, visit the documentation section of the Berkeley DB section of Oracle's web
site, located at http://www.oracle.com/technol ogy/documentation/berkel ey-db/db/.

Commit Log Message Correction

155

http://www.oracle.com/technology/documentation/berkeley-db/db/

Repository Administration

Sometimes a user will have an error in her log message (a misspelling or some misinformation, perhaps). If the repository is con-
figured (using the pr e- r evpr op- change hook; see the section called “Implementing Repository Hooks") to accept changes to
this log message after the commit is finished, the user can “fix” her log message remotely using svn propset (see svn propset (pset,
ps) in Chapter 9, Subversion Complete Reference). However, because of the potential to lose information forever, Subversion re-
positories are not, by default, configured to allow changes to unversioned properties—except by an administrator.

If alog message needs to be changed by an administrator, this can be done using svnadmin setlog. This command changes the log
message (thesvn: | og property) on agiven revision of arepository, reading the new value from a provided file.

$ echo "Here is the new, correct |og nessage" > new o0g.txt
$ svnadm n setlog nyrepos new og.txt -r 388

The svnadmin setlog command, by default, is still bound by the same protections against modifying unversioned properties as a
remote client is—the pr e- r evpr op- change and post - r evpr op- change hooks are till triggered, and therefore must be
set up to accept changes of this nature. But an administrator can get around these protections by passing the - - bypass- hooks
option to the svnadmin setlog command.

erty changes, backup systems that track unversioned property changes, and so on. In other words, be very careful

° Remember, though, that by bypassing the hooks, you are likely avoiding such things as email notifications of prop-
about what you are changing, and how you changeit.

Managing Disk Space

While the cost of storage has dropped incredibly in the past few years, disk usage is still avalid concern for administrators seeking
to version large amounts of data. Every bit of version history information stored in the live repository needs to be backed up else-
where, perhaps multiple times as part of rotating backup schedules. It is useful to know what pieces of Subversion's repository data
need to remain on the live site, which need to be backed up, and which can be safely removed.

How Subversion saves disk space

To keep the repository small, Subversion uses deltification (or delta-based storage) within the repository itself. Ddtification in-
volves encoding the representation of a chunk of data as a collection of differences against some other chunk of data. If the two
pieces of data are very similar, this deltification results in storage savings for the deltified chunk—rather than taking up space equal
to the size of the origina data, it takes up only enough space to say, “I look just like this other piece of data over here, except for
the following couple of changes.” The result is that most of the repository data that tends to be bulky—namely, the contents of ver-
sioned files—is stored at a much smaller size than the original full-text representation of that data.

While deltified storage has been a part of Subversion's design since the very beginning, there have been additional improvements
made over the years. Subversion repositories created with Subversion 1.4 or later benefit from compression of the full-text repres-
entations of file contents. Repositories created with Subversion 1.6 or later further enjoy the disk space savings afforded by repres-
entation sharing, a feature which allows multiple files or file revisions with identical file content to refer to a single shared instance
of that data rather than each having their own distinct copy thereof.

Because all of the data that is subject to deltification in a BDB-backed repository is stored in a single Berkeley DB

/ database file, reducing the size of the stored values will not immediately reduce the size of the database file itself.
Berkeley DB will, however, keep internal records of unused areas of the database file and consume those areas first
before growing the size of the database file. So while deltification doesn't produce immediate space savings, it can
drastically slow future growth of the database.

Removing dead transactions

156

Repository Administration

Though they are uncommon, there are circumstances in which a Subversion commit process might fail, leaving behind in the re-
pository the remnants of the revision-to-be that wasn't—an uncommitted transaction and all the file and directory changes associ-
ated with it. This could happen for several reasons: perhaps the client operation was inelegantly terminated by the user, or a net-
work failure occurred in the middle of an operation. Regardless of the reason, dead transactions can happen. They don't do any real
harm, other than consuming disk space. A fastidious administrator may nonethel ess wish to remove them.

Y ou can use the svnadmin Istxns command to list the names of the currently outstanding transactions:

$ svnadnin | stxns nyrepos
19

3al

a45

$

Each item in the resultant output can then be used with svnlook (and its- - t r ansact i on (- t) option) to determine who created
the transaction, when it was created, what types of changes were made in the transaction—information that is helpful in determin-
ing whether the transaction is a safe candidate for removal! If you do indeed want to remove a transaction, its name can be passed
to svnadmin rmtxns, which will perform the cleanup of the transaction. In fact, svtnadmin rmtxns can take its input directly from
the output of svnadmin Istxns!

$ svnadm n rntxns nyrepos ~svnadm n | stxns nyrepos’
$

If you use these two subcommands like this, you should consider making your repository temporarily inaccessible to clients. That
way, no one can begin a legitimate transaction before you start your cleanup. Example 5.1, “txn-info.sh (reporting outstanding
transactions)” contains a bit of shell-scripting that can quickly generate information about each outstanding transaction in your re-
pository.

Example 5.1. txn-info.sh (reporting outstanding transactions)

#!/ bi n/ sh

Cenerate informational output for all outstanding transactions in
a Subversion repository.

REPOS="${ 1} "

if ["x$REPCS" = x] ; then
echo "usage: $0 REPOS_PATH'
exi t

fi

for TXN in “svnadnin |stxns ${REPCS} ; do

echo "---[Transaction ${TXN} J------mmmmmmmm e "
svnl ook info "${REPOS}" -t "${TXN}"
done

The output of the script is basically a concatenation of several chunks of svnlook info output (see the section called “svnlook”) and
will look something like this:

157

Repository Administration

$ txn-info.sh myrepos
---[Transaction 19 J-----------------““--““-- -

sally

2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)

0

---[Transaction 38l J----------mmmm oo
harry

2001- 09- 10 16:50:30 - 0500 (Mon, 10 Sep 2001)

39

Trying to commit over a faulty network.

---[Transaction adb J---------m oo
sally

2001-09-12 11:09: 28 -0500 (Wed, 12 Sep 2001)

0

$

A long-abandoned transaction usually represents some sort of failed or interrupted commit. A transaction's datestamp can provide
interesting information—for example, how likely isit that an operation begun nine months ago is still active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of information—including Apache's error and
access logs, Subversion's operational logs, Subversion revision history, and so on—can be employed in the decision-making pro-
cess. And of course, an administrator can often simply communicate with a seemingly dead transaction's owner (via email, e.g.) to
verify that the transaction is, in fact, in azombie state.

Purging unused Berkeley DB logfiles

Until recently, the largest offender of disk space usage with respect to BDB-backed Subversion repositories were the logfiles in
which Berkeley DB performs its prewrites before modifying the actual database files. These files capture all the actions taken
along the route of changing the database from one state to another—while the database files, at any given time, reflect a particular
state, the logfiles contain all of the many changes along the way between states. Thus, they can grow and accumulate quite rapidly.

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the ability to remove its own unused log-
files automatically. Any repositories created using svnadmin when compiled against Berkeley DB version 4.2 or later will be con-
figured for this automatic logfile removal. If you don't want this feature enabled, simply passthe - - bdb- | og- keep option to the
svhadmin create command. If you forget to do this or change your mind at alater time, simply edit the DB_ CONFI Gfile found in
your repository's db directory, comment out the line that containsthe set _fl ags DB _LOG_AUTOREMOVE directive, and then
run svnadmin recover on your repository to force the configuration changes to take effect. See the section called “Berkeley DB
Configuration” for more information about database configuration.

Without some sort of automatic logfile removal in place, logfiles will accumulate as you use your repository. Thisis actually some-
what of a feature of the database system—you should be able to recreate your entire database using nothing but the logfiles, so
these files can be useful for catastrophic database recovery. But typicaly, you'll want to archive the logfiles that are no longer in
use by Berkeley DB, and then remove them from disk to conserve space. Use the svnadmin list-unused-dblogs command to list
the unused logfiles:

$ svnadmi n |ist-unused-dbl ogs /var/svn/repos
/var/svn/repos/| og. 0000000031
/var/svn/repos/| og. 0000000032
/var/svn/repos/| og. 0000000033

$ rm ~svnadmin |ist-unused-dbl ogs /var/svn/repos’
di sk space recl ai ned!

158

Repository Administration

BDB-backed repositories whose logfiles are used as part of a backup or disaster recovery plan should not make use of
the logfile autoremoval feature. Reconstruction of a repository's data from logfiles can only be accomplished only
when all the logfiles are available. If some of the logfiles are removed from disk before the backup system has a
chance to copy them elsewhere, the incomplete set of backed-up logfilesis essentially useless.

Packing FSFS filesystems

As described in the sidebar Revision files and shards, FSFS-backed Subversion repositories create, by default, a new on-disk file
for each revision added to the repository. Having thousands of these files present on your Subversion server—even when housed in
separate shard directories—can lead to inefficiencies.

The first problem is that the operating system has to reference many different files over a short period of time. This leads to ineffi-
cient use of disk caches and, as a result, more time spent seeking across large disks. Because of this, Subversion pays a perform-
ance penalty when accessing your versioned data.

The second problem is a bit more subtle. Because of the ways that most filesystems allocate disk space, each file claims more
space on the disk than it actually uses. The amount of extra space required to house a single file can average anywhere from 2 to 16
kilobytes per file, depending on the underlying filesystem in use. This translates directly into a per-revision disk usage penalty for
FSFS-backed repositories. The effect is most pronounced in repositories which have many small revisions, since the overhead in-
volved in storing the revision file quickly outgrows the size of the actual data being stored.

To solve these problems, Subversion 1.6 introduced the svnadmin pack command. By concatenating all the files of a completed
shard into a single “pack” file and then removing the origina per-revision files, svnadmin pack reduces the file count within a
given shard down to just asingle file. In doing so, it aids filesystem caches and reduces (to one) the number of times a file storage
overhead penalty is paid.

Subversion can pack existing sharded repositories which have been upgraded to the 1.6 filesystem format or later (see svnadmin
upgrade) in Chapter 9, Subversion Complete Reference. To do so, just run svnadmin pack on the repository:

$ svnadm n pack /var/svn/repos
Packi ng shard O...done.
Packi ng shard 1...done.
Packi ng shard 2...done.

Packi ng shard 34...done.
Packi ng shard 35...done.
Packi ng shard 36...done.
$

Because the packing process obtains the required locks before doing its work, you can run it on live repositories, or even as part of
a post-commit hook. Repacking packed shardsislegal, but will have no effect on the disk usage of the repository.

svnadmin pack has no effect on BDB-backed Subversion repositories.

Berkeley DB Recovery

As mentioned in the section called “Berkeley DB”, a Berkeley DB repository can sometimes be left in a frozen state if not closed
properly. When this happens, an administrator needs to rewind the database back into a consistent state. This is unique to BDB-
backed repositories, though—if you are using FSFS-backed ones instead, this won't apply to you. And for those of you using Sub-
version 1.4 with Berkeley DB 4.4 or later, you should find that Subversion has become much more resilient in these types of situ-
ations. Still, wedged Berkeley DB repositories do occur, and an administrator needs to know how to safely deal with this circum-
stance.

159

Repository Administration

To protect the data in your repository, Berkeley DB uses a locking mechanism. This mechanism ensures that portions of the data
base are not simultaneously modified by multiple database accessors, and that each process sees the data in the correct state when
that data is being read from the database. When a process needs to change something in the database, it first checks for the exist-
ence of alock on the target data. If the data is not locked, the process locks the data, makes the change it wants to make, and then
unlocks the data. Other processes are forced to wait until that lock is removed before they are permitted to continue accessing that
section of the database. (This has nothing to do with the locks that you, as a user, can apply to versioned files within the repository;
wetry to clear up the confusion caused by this terminology collision in the sidebar The Three Meanings of “Lock”.)

In the course of using your Subversion repository, fatal errors or interruptions can prevent a process from having the chance to re-
move the locks it has placed in the database. The result is that the backend database system gets “wedged.” When this happens, any
attempts to access the repository hang indefinitely (since each new accessor is waiting for alock to go away—which isn't going to

happen).

If this happens to your repository, don't panic. The Berkeley DB filesystem tak% advantage of database transactions, checkp0| nts,
and prewrite journaling to ensure that only the most catastrophic of events’ can permanently destroy a database environment. A
sufficiently paranoid repository administrator will have made off-site backups of the repository data in some fashion, but don't
head off to the tape backup storage closet just yet.

Instead, use the following recipe to attempt to “unwedge” your repository:

1. Make sure no processes are accessing (or attempting to access) the repository. For networked repositories, this also means shut-
ting down the Apache HTTP Server or svnserve daemon.

2. Become the user who owns and manages the repository. This is important, as recovering a repository while running as the
wrong user can tweak the permissions of the repository's files in such a way that your repository will still be inaccessible even
after it is“unwedged.”

3. Runthecommand svnadmi n recover /var/svn/repos. Youshould see output such asthis:

Repository | ock acquired.
Pl ease wait; recovering the repository may take sone tine...

Recovery conpl et ed.
The | atest repos revision is 19.

This command may take many minutes to complete.

4. Restart the server process.

This procedure fixes almost every case of repository wedging. Make sure that you run this command as the user that owns and
manages the database, not just asr oot . Part of the recovery process might involve re-creating from scratch various database files
(shared memory regions, e.g.). Recovering as r oot will create those files such that they are owned by r oot , which means that
even after you restore connectivity to your repository, regular users will be unable to accessit.

If the previous procedure, for some reason, does not successfully unwedge your repository, you should do two things. First, move
your broken repository directory aside (perhaps by renaming it to something like r epos. BROKEN) and then restore your latest
backup of it. Then, send an email to the Subversion users mailing list (at <user s@ubver si on. apache. or g>) describing
your problem in detail. Data integrity is an extremely high priority to the Subversion devel opers.

Migrating Repository Data Elsewhere

"For example, hard drive + huge electromagnet = disaster.

160

Repository Administration

A Subversion filesystem has its data spread throughout files in the repository, in afashion generally understood by (and of interest
to) only the Subversion developers themselves. However, circumstances may arise that call for all, or some subset, of that data to
be copied or moved into another repository.

Subversion provides such functionality by way of repository dump streams. A repository dump stream (often referred to as a
“dump file” when stored as a file on disk) is a portable, flat file format that describes the various revisions in your reposit-
ory—what was changed, by whom, when, and so on. This dump stream is the primary mechanism used to marshal versioned his-
tory—in whole or in part, with or without modification—between repositories. And Subversion provides the tools necessary for
creating and loading these dump streams: the svnadmin dump and svnadmin load subcommands, respectively, and the svnr-
dump program.

an RFC 822 format, the same type of format used for most email), it is not a plain-text file format. It is a binary file
format, highly sensitive to meddling. For example, many text editors will corrupt the file by automatically converting
line endings.

Q While the Subversion repository dump format contains human-readable portions and a familiar structure (it resembles

There are many reasons for dumping and loading Subversion repository data. Early in Subversion's life, the most common reason
was due to the evolution of Subversion itself. As Subversion matured, there were times when changes made to the backend data-
base schema caused compatibility issues with previous versions of the repository, so users had to dump their repository data using
the previous version of Subversion and load it into a freshly created repository with the new version of Subversion. Now, these
types of schema changes haven't occurred since Subversion's 1.0 release, and the Subversion developers promise not to force users
to dump and load their repositories when upgrading between minor versions (such as from 1.3 to 1.4) of Subversion. But there are
still other reasons for dumping and loading, including re-deploying a Berkeley DB repository on a new OS or CPU architecture,
switching between the Berkeley DB and FSFS backends, or (as we'll cover later in this chapter in the section called “Filtering Re-
pository History”) purging versioned data from repository history.

tion about uncommitted transactions, user locks on filesystem paths, repository or server configuration customiza-

Q The Subversion repository dump format describes versioned repository changes only. It will not carry any informa-
/ tions (including hook scripts), and so on.

The Subversion repository dump format also enables conversion from a different storage mechanism or version control system al-
together. Because the dump file format is, for the most part, human-readable, it should be relatively easy to describe generic sets of
changes—each of which should be treated as a new revision—using this file format. In fact, the cvs2svn utility (see the section
called “ Converting a Repository from CVS to Subversion”) uses the dump format to represent the contents of a CV'S repository so
that those contents can be copied into a Subversion repository.

For now, we'll concern ourselves only with migration of repository data between Subversion repositories, which we'll describe in
detail in the sections which follow.

Repository data migration using svhadmin

Whatever your reason for migrating repository history, using the svnadmin dump and svnadmin load subcommands is straight-
forward. svnadmin dump will output a range of repository revisions that are formatted using Subversion's custom filesystem
dump format. The dump format is printed to the standard output stream, while informative messages are printed to the standard er-
ror stream. This allows you to redirect the output stream to a file while watching the status output in your terminal window. For ex-
ample:

$ svnl ook youngest mnyrepos

26

$ svnadni n dunp nyrepos > dunpfile
* Dunped revision O.

* Dunped revision 1.

* Dunped revision 2.

161

Repository Administration

* Dunped revi sion 25.
* Dunped revision 26.

At the end of the process, you will have asingle file (dunpf i | e in the previous example) that contains all the data stored in your
repository in the requested range of revisions. Note that svnadmin dump is reading revision trees from the repository just like any
other “reader” process would (e.g., svn checkout), so it's safe to run this command at any time.

The other subcommand in the pair, svnadmin load, parses the standard input stream as a Subversion repository dump file and ef-
fectively replays those dumped revisions into the target repository for that operation. It also gives informative feedback, this time
using the standard output stream:

$ svnadnmin | oad new epos < dunpfile

<<< Started new txn, based on original revision 1
* adding path : A ... done.
* adding path : A/B ... done.

~------ Committed new rev 1 (l oaded fromoriginal rev 1) >>>

<<< Started new txn, based on original revision 2
* editing path : A/nu ... done.
* editing path : ADGrho ... done.

------- Committed new rev 2 (loaded fromoriginal rev 2) >>>

<<< Started new txn, based on original revision 25
* editing path : AD/'gamma ... done.

——————— Conmitted new rev 25 (|l oaded fromoriginal rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/ Z/zeta ... done.
* editing path : A/nu ... done.

------- Conmitted new rev 26 (|l oaded fromoriginal rev 26) >>>

The result of aload is new revisions added to a repository—the same thing you get by making commits against that repository
from aregular Subversion client. Just as in a commit, you can use hook programs to perform actions before and after each of the
commits made during a load process. By passing the - - use- pr e- comnri t - hook and - - use- post - conmi t - hook options
to svnadmin load, you can instruct Subversion to execute the pre-commit and post-commit hook programs, respectively, for each
loaded revision. Y ou might use these, for example, to ensure that loaded revisions pass through the same validation steps that regu-
lar commits pass through. Of course, you should use these options with care—if your post-commit hook sends emails to a mailing
list for each new commit, you might not want to spew hundreds or thousands of commit emailsin rapid succession at that list! You
can read more about the use of hook scriptsin the section called “Implementing Repository Hooks'.

Note that because svnadmin uses standard input and output streams for the repository dump and load processes, people who are
feeling especially saucy can try things such as this (perhaps even using different versions of svnadmin on each side of the pipe):

$ svnadnin create new epos _
$ svnadm n dunp ol drepos | svnadmi n | oad new epos

162

Repository Administration

By default, the dump file will be quite large—much larger than the repository itself. That's because by default every version of
every file is expressed as a full text in the dump file. This is the fastest and simplest behavior, and it's nice if you're piping the
dump data directly into some other process (such as a compression program, filtering program, or loading process). But if you're
creating a dump file for longer-term storage, you'll likely want to save disk space by using the - - del t as option. With this op-
tion, successive revisions of files will be output as compressed, binary differences—just as file revisions are stored in arepository.
This option is slower, but it resultsin a dump file much closer in size to the original repository.

We mentioned previously that svnadmin dump outputs a range of revisions. Use the - - r evi si on (-r) option to specify a
single revision, or arange of revisions, to dump. If you omit this option, all the existing repository revisions will be dumped.

$ svnadmi n dunp nyrepos -r 23 > rev-23.dunpfile
$ svnadmi n dunp nyrepos -r 100: 200 > revs-100-200. dunpfile

As Subversion dumps each new revision, it outputs only enough information to allow a future loader to re-create that revision
based on the previous one. In other words, for any given revision in the dump file, only the items that were changed in that revision
will appear in the dump. The only exception to this rule is the first revision that is dumped with the current svnadmin dump com-
mand.

By default, Subversion will not express the first dumped revision as merely differences to be applied to the previous revision. For
one thing, there is no previous revision in the dump file! And second, Subversion cannot know the state of the repository into
which the dump data will be loaded (if it ever is). To ensure that the output of each execution of svnadmin dump is self-sufficient,
the first dumped revision is, by default, afull representation of every directory, file, and property in that revision of the repository.

However, you can change this default behavior. If you add the - - i ncr enent al option when you dump your repository, svhad-
min will compare the first dumped revision against the previous revision in the repository—the same way it treats every other revi-
sion that gets dumped. It will then output the first revision exactly as it does the rest of the revisions in the dump
range—mentioning only the changes that occurred in that revision. The benefit of this is that you can create several small dump
files that can be loaded in succession, instead of one large one, like so:

$ svnadm n dunp nmyrepos -r 0:1000 > dunpfilel
$ svnadmi n dunp myrepos -r 1001: 2000 --incremental > dunpfile2
$ svnadm n dunp myrepos -r 2001: 3000 --increnmental > dunpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadm n | oad new epos < dunpfilel
$ svnadm n | oad new epos < dunpfile2
$ svnadm n | oad new epos < dunpfile3

Another neat trick you can perform with this- - i ncr ement al option involves appending to an existing dump file a new range of
dumped revisions. For example, you might have apost - conmi t hook that simply appends the repository dump of the single re-
vision that triggered the hook. Or you might have a script that runs nightly to append dump file data for all the revisions that were
added to the repository since the last time the script ran. Used like this, svnadmin dump can be one way to back up changes to
your repository over timein case of a system crash or some other catastrophic event.

163

Repository Administration

The dump format can aso be used to merge the contents of several different repositories into a single repository. By using the -

- parent - di r option of svnadmin load, you can specify a new virtual root directory for the load process. That means if you
have dump files for three repositories—say cal c- dunpfi |l e, cal - dunpfil e, and ss- dunpfi | e—you can first create a
new repository to hold them all:

$ svnadmi n create /var/svn/projects
$

Then, make new directories in the repository that will encapsulate the contents of each of the three previous repositories:

$ svn nkdir -m"Initial project roots" \
file://lvar/svn/projects/calc \
file://llvar/svn/projects/cal endar \
file://lvar/svn/projects/spreadsheet
gomﬁtted revision 1.

Lastly, load the individual dump filesinto their respective locations in the new repository:

$ svnadm n load /var/svn/projects --parent-dir calc < cal c-dunpfile
$ svnadnin | oad /var/svn/ projects --parent-dir cal endar < cal-dunpfile
$ svnadnin | oad /var/svn/ projects --parent-dir spreadsheet < ss-dunpfile

Repository data migration using svnrdump

In Subversion 1.7, svnrdump joined the set of stock Subversion tools. It offers fairly specialized functionality, essentially as a net-
work-aware version of the svnadmin dump and svhadmin load commands which we discuss in depth in the section called
“Repository data migration using svnadmin”. svnrdump dump will generate a dump stream from a remote repository, spewing it
to standard output; svnrdump load will read a dump stream from standard input and load it into a remote repository. Using svnr-
dump, you can generate incremental dumps just as you might with svnadmin dump. Y ou can even dump a subtree of the reposit-
ory—something that svnadmin dump cannot do.

The primary difference is that instead of requiring direct access to the repository, svnrdump operates remotely, using the very
same Repository Access (RA) protocols that the Subversion client does. As such, you might need to provide authentication creden-
tials. Also, your remote interations are subject to any authorization limitations configured on the Subversion server.

svhrdump dump requires that the remote server be running Subversion 1.4 or newer. It currently generates dump

/ streams only of the sort which are created when you pass the - - del t as option to svnadmin dump. Thisisn't inter-
esting in the typical use-cases, but might impact specific types of custom transformations you might wish to apply to
the resulting dump stream.

164

Repository Administration

itory have revision property changes enabled via the pre-revprop-change hook. See pre-revprop-change in Chapter 9,

<> Because it modifies revision properties after committing new revisions, svnrdump load requires that the target repos-
/ Subversion Compl ete Reference for details.

As you might expect, you can use svnadmin and svnrdump in concert. Y ou can, for example, use svnrdump dump to generate a
dump stream from aremote repository, and pipe the results thereof through svnadmin load to copy all that repository history into a
local repository. Or you can do the reverse, copying history from alocal repository into a remote one.

By usingfil e:// URLs, svnrdump can also access local repositories, but it will be doing so via Subversion's Re-
_') pository Access (RA) abstraction layer—you'll get better performance out of svnadmin in such situations.

Filtering Repository History

Since Subversion stores your versioned history using, at the very least, binary differencing algorithms and data compression
(optionally in a completely opaque database system), attempting manual tweaks is unwise if not quite difficult, and at any rate
strongly dlscouraged And once data has been stored in your repository, Subversion generally doesn't provide an easy way to re-
move that data.® But inevitably, there will be times when you would like to manipulate the history of your repository. Y ou might
need to strip out all instances of afile that was accidentally added to the repository (and shouldn't be there for whatever reason). o
Or, perhaps you have multiple projects sharing a single repository, and you decide to split them up into their own repositories. To
accomplish tasks such as these, administrators need a more manageable and malleable representation of the data in their repositor-
ies—the Subversion repository dump format.

As we described earlier in the section called “Migrating Repository Data Elsewhere”, the Subversion repository dump format is a
human-readable representation of the changes that you've made to your versioned data over time. Use the svnadmin dump or svn-
rdump dump command to generate the dump data, and svnadmin load or svnrdump load to populate a new repository with it.
The great thing about the human-readability aspect of the dump format is that, if you aren't careless about it, you can manualy in-
spect and modify it. Of course, the downside is that if you have three years worth of repository activity encapsulated in what is
likely to be avery large dump file, it could take you along, long time to manually inspect and modify it.

That's where svndumpfilter becomes useful. This program acts as a path-based filter for repository dump streams. Simply give it
either alist of paths you wish to keep or alist of paths you wish to not keep, and then pipe your repository dump data through this
filter. The result will be a modified stream of dump data that contains only the versioned paths you (explicitly or implicitly) reques-
ted.

Let'slook at arealistic example of how you might use this program. Earlier in this chapter (see the section called “Planning Y our
Repository Organization”), we discussed the process of deciding how to choose a layout for the data in your repositories—using
one repository per project or combining them, arranging stuff within your repository, and so on. But sometimes after new revisions
start flying in, you rethink your layout and would like to make some changes. A common change is the decision to move multiple
projects that are sharing a single repository into separate repositories for each project.

Our imaginary repository contains three projects: cal ¢, cal endar, and spr eadsheet . They have been living side-by-side in
alayout like this:

/
cac/
trunk/
branches/
tags/
calendar/

8That's rather the reason you use version control at all, right?
Conscious, cautious removal of certain bits of versioned data is actually supported by real use cases. That's why an “obliterate” feature has been one of the most
highly requested Subversion features, and one which the Subversion devel opers hope to soon provide.

165

Repository Administration

trunk/
branches/
tagy/
spreadsheet/
trunk/
branches/

tags/
To get these three projects into their own repositories, we first dump the whole repository:

svnadm n dunp /var/svn/repos > repos-dunmpfile
Dunped revi sion
Dunped revi si on
Dunped revi si on
Dunped revi si on

* % X X ep
wh=Oo

©h:

Next, run that dump file through the filter, each time including only one of our top-level directories. This resultsin three new dump
files:

$ svndunpfilter include calc < repos-dunpfile > cal c-dunpfile
$ svndunpfilter include cal endar < repos-dunpfile > cal-dunpfile
$ svndunpfilter include spreadsheet < repos-dumpfile > ss-dunpfile

At this point, you have to make a decision. Each of your dump files will create a valid repository, but will preserve the paths ex-
actly as they were in the original repository. This means that even though you would have a repository solely for your cal ¢
project, that repository would still have a top-level directory named cal c. If you want your t r unk, t ags, and br anches dir-
ectories to live in the root of your repository, you might wish to edit your dump files, tweaking the Node- pat h and Node-
copyf r om pat h headers so that they no longer have that first cal ¢/ path component. Also, you'll want to remove the section
of dump data that createsthe cal ¢ directory. It will look something like the following:

Node- path: calc
Node- acti on: add
Node- ki nd: dir
Content-length: O

If you do plan on manually editing the dump file to remove a top-level directory, make sure your editor is not set to
automatically convert end-of-line characters to the native format (e.g., \ r \ n to\ n), as the content will then not agree
with the metadata. Thiswill render the dump file useless.

166

Repository Administration

All that remains now isto create your three new repositories, and load each dump file into the right repository, ignoring the UUID
found in the dump stream:

$ svnadnin create calc

$ svnadmn load --ignore-uuid calc < cal c-dunpfile

<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : button.c ... done.

$ svnadmi n create cal endar

$ svnadmin |load --ignore-uuid cal endar < cal -dunpfile

<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : cal.c ... done.

$ svnadm n create spreadsheet
$ svnadm n |l oad --ignore-uui d spreadsheet < ss-dunpfile
<<< Started new transaction, based on original revision 1
* adding path : Mkefile ... done.
* adding path : ss.c ... done.

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty” revisions. If a given revision con-
tains only changes to paths that were filtered out, that now-empty revision could be considered uninteresting or even unwanted. So
to give the user control over what to do with those revisions, svndumpfilter provides the following command-line options:

--drop-enpty-revs
Do not generate empty revisions at all—just omit them.

- -renunber-revs
If empty revisions are dropped (using the - - dr op- enpt y- r evs option), change the revision numbers of the remaining re-
visions so that there are no gaps in the numeric sequence.

--preserve-revprops
If empty revisions are not dropped, preserve the revision properties (log message, author, date, custom properties, etc.) for
those empty revisions. Otherwise, empty revisions will contain only the original datestamp, and a generated log message that
indicates that this revision was emptied by svndumpfilter.

While svndumpfilter can be very useful and a huge timesaver, there are unfortunately a couple of gotchas. First, this utility is
overly sensitive to path semantics. Pay attention to whether paths in your dump file are specified with or without leading slashes.
You'll want to look at the Node- pat h and Node- copyf r omt pat h headers.

Node- pat h: spreadsheet/ Makefil e

If the paths have leading slashes, you should include leading slashes in the paths you pass to svndumpfilter include and svn-
dumpfilter exclude (and if they don't, you shouldn't). Further, if your dump file has an inconsistent usage of leading slashes for
some reason,*® you should probably normalize those paths so that they all have, or all lack, leading slashes.

Owhile svnadmin dump has a consistent leading slash policy (to not include them), other programs that generate dump data might not be so consistent.

167

Repository Administration

Also, copied paths can give you some trouble. Subversion supports copy operations in the repository, where a new path is created
by copying some already existing path. It is possible that at some point in the lifetime of your repository, you might have copied a
file or directory from some location that svndumpfilter is excluding, to alocation that it isincluding. To make the dump data self-
sufficient, svndumpfilter needs to still show the addition of the new path—including the contents of any files created by the
copy—and not represent that addition as a copy from a source that won't exist in your filtered dump data stream. But because the
Subversion repository dump format shows only what was changed in each revision, the contents of the copy source might not be
readily available. If you suspect that you have any copies of this sort in your repository, you might want to rethink your set of in-
cluded/excluded paths, perhaps including the paths that served as sources of your troublesome copy operations, too.

Finaly, svndumpfilter takes path filtering quite literally. If you are trying to copy the history of a project rooted at t r unk/

nmy- pr oj ect and moveit into arepository of its own, you would, of course, use the syndumpfilter include command to keep all
the changes in and under t r unk/ my- pr oj ect . But the resultant dump file makes no assumptions about the repository into
which you plan to load this data. Specifically, the dump data might begin with the revision that added the t r unk/ my- pr oj ect

directory, but it will not contain directives that would create thet r unk directory itself (becauset r unk doesn't match the include
filter). You'll need to make sure that any directories that the new dump stream expects to exist actually do exist in the target repos-
itory before trying to load the stream into that repository.

Repository Replication

There are several scenarios in which it is quite handy to have a Subversion repository whose version history is exactly the same as
some other repository's. Perhaps the most obvious one is the maintenance of a simple backup repository, used when the primary re-
pository has become inaccessible due to a hardware failure, network outage, or other such annoyance. Other scenarios include de-
ploying mirror repositories to distribute heavy Subversion load across multiple servers, use as a soft-upgrade mechanism, and so
on.

Subversion provides a program for managing scenarios such as these. svnsync works by essentially asking the Subversion server to
“replay” revisions, one at a time. It then uses that revision information to mimic a commit of the same to another repository.
Neither repository needs to be locally accessible to the machine on which svnsync is running—its parameters are repository URLS,
and it does all its work through Subversion's Repository Access (RA) interfaces. All it requiresis read access to the source reposit-
ory and read/write access to the destination repository.

When using svhsync against a remote source repository, the Subversion server for that repository must be running
/ Subversion version 1.4 or later.

Replication with svnsync

Assuming you aready have a source repository that you'd like to mirror, the next thing you need is a target repository that will ac-
tually serve as that mirror. This target repository can use either of the available filesystem data-store backends (see the section
called “Choosing a Data Store”)—Subversion's abstraction layers ensure that such details don't matter. But by default, it must not
yet have any version history init. (Well discuss an exception to this later in this section.)

The protocol that svnsync uses to communicate revision information is highly sensitive to mismatches between the versioned his-
tories contained in the source and target repositories. For this reason, while svnsync cannot demand that the target repository be
read-only,ll allowing the revision history in the target repository to change by any mechanism other than the mirroring processis a
recipe for disaster.

Do not modify amirror repository in such away asto cause its version history to deviate from that of the repository it
mirrors. The only commits and revision property modifications that ever occur on that mirror repository should be
those performed by the svnsync tool.

Another requirement of the target repository is that the svnsync process be alowed to modify revision properties. Because svnsync
works within the framework of that repository's hook system, the default state of the repository (which isto disallow revision prop-

N fact, it can't truly be read-only, or svnsync itself would have a tough time copying revision history into it.

168

Repository Administration

erty changes; see pre-revprop-change in Chapter 9, Subversion Complete Reference) isinsufficient. You'll need to explicitly imple-
ment the pre-revprop-change hook, and your script must allow svnsync to set and change revision properties. With those provi-
sionsin place, you are ready to start mirroring repository revisions.

It's a good idea to implement authorization measures that allow your repository replication process to perform its
_') tasks while preventing other users from modifying the contents of your mirror repository at all.

Let's walk through the use of svnsync in a somewhat typical mirroring scenario. We'll pepper this discourse with practical recom-
mendations, which you are free to disregard if they aren't required by or suitable for your environment.

We will be mirroring the public Subversion repository which houses the source code for this very book and exposing that mirror
publicly on the Internet, hosted on a different machine than the one on which the original Subversion source code repository lives.
This remote host has a global configuration that permits anonymous users to read the contents of repositories on the host, but re-
quires users to authenticate to modify those repositories. (Please forgive us for glossing over the details of Subversion server con-
figuration for the moment—those are covered thoroughly in Chapter 6, Server Configuration.) And for no other reason than that it
makes for a more interesting example, we'll be driving the replication process from a third machine—the one that we currently find
ourselves using.

First, we'll create the repository which will be our mirror. This and the next couple of steps do require shell access to the machine
on which the mirror repository will live. Once the repository is all configured, though, we shouldn't need to touch it directly again.

$ ssh admi n@vn. exanpl e. com "svnadni n create /var/svn/svn-nmirror"
adm n@vn. exanpl e. conl s password: *******x*
$

At this point, we have our repository, and due to our server's configuration, that repository is now “live” on the Internet. Now, be-
cause we don't want anything modifying the repository except our replication process, we need a way to distinguish that process
from other would-be committers. To do so, we use a dedicated username for our process. Only commits and revision property
modifications performed by the special username syncuser will be allowed.

WEe'll use the repository's hook system both to allow the replication process to do what it needs to do and to enforce that only it is
doing those things. We accomplish this by implementing two of the repository event hooks—pre-revprop-change and start-commit.
Our pr e-r evpr op- change hook script is found in Example 5.2, “Mirror repository's pre-revprop-change hook script”, and ba-
sically verifies that the user attempting the property changesis our syncuser user. If so, the change is allowed; otherwise, it is
denied.

Example5.2. Mirror repository's pre-revprop-change hook script

#!/ bin/sh
USER:II $3II
if ["$USER' = "syncuser"]; then exit 0; fi

echo "Only the syncuser user nmay change revision properties" >&2
exit 1

That covers revision property changes. Now we need to ensure that only the syncuser user is permitted to commit new revisions
to the repository. We do thisusing a st art-comi t hook script such as the one in Example 5.3, “Mirror repository's start-
commit hook script”.

169

Repository Administration

Example5.3. Mirror repository's start-commit hook script

#!/ bin/ sh
USER=" $2"
if ["$USER' = "syncuser"]; then exit 0; fi

echo "Only the syncuser user nmay conmmit new revisions" >&2
exit 1

After installing our hook scripts and ensuring that they are executable by the Subversion server, we're finished with the setup of the
mirror repository. Now, we get to actually do the mirroring.

The first thing we need to do with svnsync is to register in our target repository the fact that it will be amirror of the source repos-
itory. We do this using the svnsync initialize subcommand. The URLSs we provide point to the root directories of the target and
source repositories, respectively. In Subversion 1.4, this is required—only full mirroring of repositories is permitted. Beginning
with Subversion 1.5, though, you can use svnsync to mirror only some subtree of the repository, too.

$ svnsync help init
initialize (init): usage: svnsync initialize DEST _URL SOURCE URL

Initialize a destination repository for synchronization from
anot her repository.

$ svnsync initialize http://svn.exanple.com svn-mrror \
htt p://svnbook. googl ecode. com svn \
--Sync- usernanme syncuser --sync-password syncpass
Copi ed properties for revision 0 (svn:sync-* properties skipped).
gOTE: Normal i zed svn:* properties to LF line endings (1 rev-props, O node-props).

Our target repository will now remember that it is a mirror of the public Subversion source code repository. Notice that we
provided a username and password as arguments to svnsync—that was required by the pre-revprop-change hook on our mirror re-
pository.

In Subversion 1.4, the values given to svnsync's - - user name and - - passwor d command-line options were used
/ for authentication against both the source and destination repositories. This caused problems when a user's credentials
weren't exactly the same for both repositories, especially when running in noninteractive mode (with the -
-non-interacti ve option). This was fixed in Subversion 1.5 with the introduction of two new pairs of options.
Use - - sour ce- user name and - - sour ce- passwor d to provide authentication credentials for the source re-
pository; use - - sync- user namne and - - sync- passwor d to provide credentials for the destination repository.
(Theold - - user name and - - passwor d options still exist for compatibility, but we advise against using them.)

And now comes the fun part. Wlth a single subcommand, we can tell svnsync to copy all the as-yet-unmirrored revisions from the
source repository to the target 2 The svnsync synchronize subcommand will peek into the special revision properties previously
stored on the target repository and determine how much of the source repository has been previously mirrored—in this case, the

12Be forewarned that while it will take only afew seconds for the average reader to parse this paragraph and the sample output that follows it, the actual time re-
quired to complete such amirroring operation is, shall we say, quite a bit longer.

170

Repository Administration

most recently mirrored revision is r0. Then it will query the source repository and determine what the latest revision in that reposit-
ory is. Finaly, it asks the source repository's server to start replaying all the revisions between 0 and that latest revision. As svn-
sync gets the resultant response from the source repository's server, it begins forwarding those revisions to the target repository's
Server as hew commits.

$ svnsync hel p synchroni ze
synchroni ze (sync): usage: svnsync synchroni ze DEST _URL [SOURCE URL]

Transfer all pending revisions to the destination fromthe source
with which it was initialized.

$ svnsync synchroni ze http://svn. exanple.confsvn-mrror \
htt p: // svnbook. googl ecode. coni svn

Committed revision 1.

Copi ed properties for revision 1.

Committed revision 2.

Copi ed properties for revision 2.

Transmitting file data .

Conmitted revision 3.

Copi ed properties for revision 3.

Transmitting file data .

Committed revision 4063.

Copi ed properties for revision 4063.
Transmitting file data .

Committed revision 4064.

Copi ed properties for revision 4064.
Transmitting file data
Conmmitted revision 4065.

gopi ed properties for revision 4065.

Of particular interest here is that for each mirrored revision, there is first acommit of that revision to the target repository, and then
property changes follow. This is because the initial commit is performed by (and attributed to) the user syncuser, and it is
datestamped with the time as of that revision's creation. Also, Subversion's underlying repository access interfaces don't provide a
mechanism for setting arbitrary revision properties as part of a commit. So svnsync follows up with an immediate series of prop-
erty modifications that copy into the target repository all the revision properties found for that revision in the source repository.
This also has the effect of fixing the author and datestamp of the revision to match that of the source repository.

Also noteworthy is that svnsync performs careful bookkeeping that allows it to be safely interrupted and restarted without ruining
the integrity of the mirrored data. If a network glitch occurs while mirroring a repository, simply repeat the svnsync synchronize
command, and it will happily pick up right where it left off. In fact, as new revisions appear in the source repository, thisis exactly
what you do to keep your mirror up to date.

Because of this, invocations of svnsync which follow the initialization step do not require that you provide the source
URL on the command line again. However, for security purposes, we recommend that you continue to do so. De-
pending on how it is deployed, it may not be safe for svnsync to trust the source URL which it retrieves from the mir-
ror repository, and from which it pulls versioned data.

Q As part of its bookkeeping, svnsync records in the mirror repository the URL with which the mirror was initialized.

svnsync Bookkeeping

svnhsync needs to be able to set and modify revision properties on the mirror repository because those properties are part of
the data it is tasked with mirroring. As those properties change in the source repository, those changes need to be reflected in
the mirror repository, too. But svnsync also uses a set of custom revision properties—stored in revision O of the mirror re-

171

Repository Administration

pository—for its own internal bookkeeping. These properties contain information such as the URL and UUID of the source
repository, plus some additional state-tracking information.

One of those pieces of state-tracking information is a flag that essentially just means “there's a synchronization in progress
right now.” Thisis used to prevent multiple svnsync processes from colliding with each other while trying to mirror data to
the same destination repository. Now, generally you won't need to pay any attention whatsoever to any of these special prop-
erties (all of which begin with the prefix svn: sync-). Occasionally, though, if a synchronization fails unexpectedly, Sub-
version never has a chance to remove this particular state flag. This causes all future synchronization attempts to fail because
it appears that a synchronization is still in progress when, in fact, none is. Fortunately, recovering from this situation is easy
to do. In Subversion 1.7, you can use the newly introduced - - st eal - | ock option with svnsync's commands. In previous
Subversion versions, you need only to remove the svn: sync- | ock property which serves as this flag from revision O of
the mirror repository:

$ svn propdel --revprop -r0 svn:sync-lock http://svn. exanpl e.conf svn-mrror
property 'svn:sync-lock' deleted fromrepository revision O
$

Also, svnsync stores the source repository URL provided at mirror initialization time in a bookkeeping property on the mir-
ror repository. Future synchronization operations against that mirror which omit the source URL at the command line will
consult the special svn: sync-from url property stored on the mirror itself to know where to synchronize from. This
value is used literally by the synchronization process, though. Be wary of using non-fully-qualified domain names (such as
referring to svnbook. r ed- bean. comas simply svnbook because that happens to work when you are connected dir-
ectly to the r ed- bean. comnetwork), domain names which don't resolve or resolve differently depending on where you
happen to be operating from, or | P addresses (which can change over time). But here again, if you need an existing mirror to
start referring to a different URL for the same source repository, you can change the bookkeeping property which houses that
information. Users of Subversion 1.7 or better can use svhsync init --allow-non-empty to reinitialize their mirrors with new
source URL:

$ svnsync initialize --allownon-enpty http://svn.exanpl e.com svn-mrror \
NEW SOURCE- URL

Copi ed properties for revision 4065.

$

If you are running an older version of Subversion, you'll need to manually tweak the svn: sync-from url| bookkeeping
property:

$ svn propset --revprop -r0 svn:sync-fromurl NEW SOURCE- URL \
http://svn. exanpl e. conf svn-mirror

property 'svn:sync-fromurl' set on repository revision O

$

Another interesting thing about these special bookkeeping properties is that svnsync will not attempt to mirror any of those
properties when they are found in the source repository. The reason is probably obvious, but basically boils down to svnsync
not being able to distinguish the special propertiesit has merely copied from the source repository from those it needs to con-
sult and maintain for its own bookkeeping needs. This situation could occur if, for example, you were maintaining a mirror
of a mirror of a third repository. When svnsync sees its own special properties in revision 0 of the source repository, it
simply ignores them.

172

Repository Administration

An svnsync info subcommand was added in Subversion 1.6 to easily display the special bookkeeping properties in the des-
tination repository.

$ svnsync help info
i nfo: usage: svnsync info DEST URL

Print information about the synchronization destination repository
| ocated at DEST_URL.

$ svnsync info http://svn.exanpl e.conl svn-mrror

Source URL: http://svnbook. googl ecode. com svn

Source Repository UUI D: 931749d0- 5854- 0410- 9456- f 14be4d6b398
Iéast Merged Revision: 4065

There is, however, one bit of inelegance in the process. Because Subversion revision properties can be changed at any time
throughout the lifetime of the repository, and because they don't leave an audit trail that indicates when they were changed, replica
tion processes have to pay special attention to them. If you've already mirrored the first 15 revisions of a repository and someone
then changes a revision property on revision 12, svnsync won't know to go back and patch up its copy of revision 12. You'll need
to tell it to do so manually by using (or with some additional tooling around) the svnsync copy-revprops subcommand, which
simply rereplicates all the revision properties for a particular revision or range thereof.

$ svnsync hel p copy-revprops
COpy-revprops: usage:

1. svnsync copy-revprops DEST URL [SOURCE URL]
2. svnsync copy-revprops DEST _URL REV][: REV2]

$ svnsync copy-revprops http://svn.exanpl e.confsvn-mirror 12
gopi ed properties for revision 12.

That's repository replication via svnsync in a nutshell. You'll likely want some automation around such a process. For example,
while our example was a pull-and-push setup, you might wish to have your primary repository push changes to one or more
blessed mirrors as part of its post-commit and post-revprop-change hook implementations. This would enable the mirror to be up to
date in as near to real time asislikely possible.

Partial replication with svnsync

svnsync isn't limited to full copies of everything which livesin arepository. It can handle various shades of partial replication, too.
For example, while it isn't very commonplace to do so, svnsync does gracefully mirror repositories in which the user as whom it
authenticates has only partial read access. It simply copies only the bits of the repository that it is permitted to see. Obviously, such
amirror is not useful as a backup solution.

As of Subversion 1.5, svnsync also has the ability to mirror a subset of a repository rather than the whole thing. The process of set-
ting up and maintaining such a mirror is exactly the same as when mirroring a whole repository, except that instead of specifying
the source repository's root URL when running svnsync init, you specify the URL of some subdirectory within that repository.
Synchronization to that mirror will now copy only the bits that changed under that source repository subdirectory. There are some
limitations to this support, though. First, you can't mirror multiple digoint subdirectories of the source repository into a single mir-

173

Repository Administration

ror repository—you'd need to instead mirror some parent directory that is common to both. Second, the filtering logic is entirely
path-based, so if the subdirectory you are mirroring was renamed at some point in the past, your mirror would contain only the re-
visions since the directory appeared at the URL you specified. And likewise, if the source subdirectory is renamed in the future,
your synchronization processes will stop mirroring data at the point that the source URL you specified is no longer valid.

A quick trick for mirror creation

We mentioned previously the cost of setting up an initial mirror of an existing repository. For many folks, the sheer cost of trans-
mitting thousands—or millions—of revisions of history to a new mirror repository via svnsync is a show-stopper. Fortunately,
Subversion 1.7 provides a workaround by way of anew - - al | ow non- enpt y option to svnsync initialize. This option allows
you to initialize one repository as a mirror of another while bypassing the verification that the to-be-initialized mirror has no ver-
sion history present in it. Per our previous warnings about the sensitivity of this whole replication process, you should rightly dis-
cern that thisis an option to be used only with great caution. But it's wonderfully handy when you have administrative access to the
source repository, where you can simply make a physical copy of the repository and then initialize that copy as a new mirror:

$ svnadm n hotcopy /path/to/repos /path/to/ mrror-repos
$ ### create /path/to/ mrror-repos/hooks/ pre-revprop-change
$ svnsync initialize file:///path/to/mrror-repos \
file:///path/tolrepos
svnsync: EO000022: Destination repository already contains revision history; co
nsider using --allownon-enpty if the repository's revisions are known to mrr
or their respective revisions in the source repository
$ svnsync initialize --allownon-enpty file:///path/to/mrror-repos \
file:///lpath/tolrepos
gopied properties for revision 32042.

Admins who are running a version of Subversion prior to 1.7 (and thus do not have access to svnsync initialize's -
-al | ow non- enpt y feature) can accomplish effectively the same thing that that feature does through careful manipulation of
the r0 revision properties on the copy of the repository which is slated to become a mirror of the original. Use svnadmin setrev-
prop to create the same bookkeeping properties that svnsync would have created there.

Replication wrap-up

We've discussed a couple of ways to replicate revision history from one repository to another. So let's look now at the user end of
these operations. How does replication and the various situations which call for it affect Subversion clients?

As far as user interaction with repositories and mirrors goes, it is possible to have a single working copy that interacts with both,
but you'll have to jump through some hoops to make it happen. First, you need to ensure that both the primary and mirror repositor-
ies have the same repository UUID (which is not the case by default). See the section called “Managing Repository UUIDS’ later
in this chapter for more about this.

Once the two repositories have the same UUID, you can use svn relocate to point your working copy to whichever of the reposit-
ories you wish to operate against, a process that is described in svn relocate in Chapter 9, Subversion Complete Reference. Thereis
a possible danger here, though, in that if the primary and mirror repositories aren't in close synchronization, a working copy up to
date with, and pointing to, the primary repository will, if relocated to point to an out-of-date mirror, become confused about the ap-
parent sudden loss of revisions it fully expects to be present, and it will throw errors to that effect. If this occurs, you can relocate
your working copy back to the primary repository and then either wait until the mirror repository is up to date, or backdate your
working copy to arevision you know is present in the sync repository, and then retry the relocation.

Finally, be aware that the revision-based replication provided by svnsync is only that—replication of revisions. Only the kinds of
information carried by the Subversion repository dump file format are available for replication. As such, tools such as svnsync
(and svnrdump, which we discuss in the section called “ Repository data migration using svnrdump”) are limited in ways similar to
that of the repository dump stream. They do not include in their replicated information such things as the hook implementations,
repository or server configuration data, uncommitted transactions, or information about user locks on repository paths.

174

Repository Administration

Repository Backup

Despite numerous advances in technology since the birth of the modern computer, one thing unfortunately rings true with crystal-
line clarity—sometimes things go very, very awry. Power outages, network connectivity dropouts, corrupt RAM, and crashed hard
drives are but ataste of the evil that Fate is poised to unleash on even the most conscientious administrator. And so we arrive at a
very important topic—how to make backup copies of your repository data.

There are two types of backup methods available for Subversion repository administrators—full and incremental. A full backup of
the repository involves squirreling away in one sweeping action all the information required to fully reconstruct that repository in
the event of a catastrophe. Usually, it means, quite literally, the duplication of the entire repository directory (which includes either
aBerkeley DB or FSFS environment). Incremental backups are lesser things: backups of only the portion of the repository data that
has changed since the previous backup.

As far as full backups go, the naive approach might seem like a sane one, but unless you temporarily disable all other access to
your repository, simply doing a recursive directory copy runs the risk of generating a faulty backup. In the case of Berkeley DB,
the documentation describes a certain order in which database files can be copied that will guarantee a valid backup copy. A simil-
ar ordering exists for FSFS data. But you don't have to implement these algorithms yourself, because the Subversion development
team has already done so. The svnadmin hotcopy command takes care of the minutiainvolved in making a hot backup of your re-
pository. And itsinvocation is astrivial asthe Unix cp or Windows copy operations:

$ svnadm n hotcopy /var/svn/repos /var/svn/repos-backup

The resultant backup is a fully functional Subversion repository, able to be dropped in as a replacement for your live repository
should something go horribly wrong.

When making copies of a Berkeley DB repository, you can even instruct svnadmin hotcopy to purge any unused Berkeley DB
logfiles (see the section called “Purging unused Berkeley DB logfiles’) from the original repository upon completion of the copy.
Simply providethe - - cl ean- | ogs option on the command line.

$ svnadm n hotcopy --clean-1o0gs /var/svn/bdb-repos /var/svn/bdb-repos-backup

Additional tooling around this command is available, too. Thet ool s/ backup/ directory of the Subversion source distribution
holds the hot-backup.py script. This script adds a bit of backup management atop svnadmin hotcopy, allowing you to keep only
the most recent configured number of backups of each repository. It will automatically manage the names of the backed-up reposit-
ory directories to avoid collisions with previous backups and will “rotate off” older backups, deleting them so that only the most
recent ones remain. Even if you aso have an incremental backup, you might want to run this program on a regular basis. For ex-
ample, you might consider using hot-backup.py from a program scheduler (such as cron on Unix systems), which can cause it to
run nightly (or at whatever granularity of time you deem safe).

Some administrators use a different backup mechanism built around generating and storing repository dump data. We described in
the section called “Migrating Repository Data Elsewhere” how to use svnadmin dump with the- - i ncr enent al option to per-
form an incremental backup of a given revision or range of revisions. And of course, you can achieve afull backup variation of this
by omitting the - - i ncr enent al option to that command. There is some value in these methods, in that the format of your
backed-up information is flexible—it's not tied to a particular platform, versioned filesystem type, or release of Subversion or
Berkeley DB. But that flexibility comes at a cost, namely that restoring that data can take a long time—Ilonger with each new revi-
sion committed to your repository. Also, asis the case with so many of the various backup methods, revision property changes that
are made to already backed-up revisions won't get picked up by a nonoverlapping, incremental dump generation. For these reasons,
we recommend against relying solely on dump-based backup approaches.

As you can see, each of the various backup types and methods has its advantages and disadvantages. The easiest is by far the full
hot backup, which will always result in a perfect working replica of your repository. Should something bad happen to your live re-

175

Repository Administration

pository, you can restore from the backup with a simple recursive directory copy. Unfortunately, if you are maintaining multiple
backups of your repository, these full copies will each eat up just as much disk space as your live repository. Incremental backups,
by contrast, tend to be quicker to generate and smaller to store. But the restoration process can be a pain, often involving applying
multiple incremental backups. And other methods have their own peculiarities. Administrators need to find the balance between the
cost of making the backup and the cost of restoring it.

The svnsync program (see the section called “Repository Replication™) actually provides a rather handy middle-ground approach.
If you are regularly synchronizing a read-only mirror with your main repository, in a pinch your read-only mirror is probably a
good candidate for replacing that main repository if it falls over. The primary disadvantage of this method is that only the ver-
sioned repository data gets synchronized—repository configuration files, user-specified repository path locks, and other items that
might live in the physical repository directory but not inside the repository's virtual versioned filesystem are not handled by svn-

sync.

In any backup scenario, repository administrators need to be aware of how modifications to unversioned revision properties affect
their backups. Since these changes do not themselves generate new revisions, they will not trigger post-commit hooks, and may not
even trigger the pre-revprop-change and post-revprop-change hooks.®® And since you can change revision properties without re-
spect to chronological order—you can change any revision's properties at any time—an incremental backup of the latest few revi-
sions might not catch a property modification to a revision that was included as part of a previous backup.

Generally speaking, only the truly paranoid would need to back up their entire repository, say, every time a commit occurred.
However, assuming that a given repository has some other redundancy mechanism in place with relatively fine granularity (such as
per-commit emails or incremental dumps), a hot backup of the database might be something that a repository administrator would
want to include as part of a system-wide nightly backup. It's your data—protect it as much asyou'd like.

Often, the best approach to repository backupsis a diversified one that leverages combinations of the methods described here. The
Subversion developers, for example, back up the Subversion source code repository nightly using hot-backup.py and an off-site
rsync of those full backups; keep multiple archives of all the commit and property change notification emails; and have repository
mirrors maintained by various volunteers using svnsync. Y our solution might be similar, but should be catered to your needs and
that delicate balance of convenience with paranoia. And whatever you do, validate your backups from time to time—what good is
asparetire that has ahole in it? While al of this might not save your hardware from the iron fist of Fate,*# it should certai nly help
you recover from those trying times.

Managing Repository UUIDs

Subversion repositories have a universally unique identifier (UUID) associated with them. This is used by Subversion clients to
verify the identity of a repository when other forms of verification aren't good enough (such as checking the repository URL,
which can change over time). Most Subversion repository administrators rarely, if ever, need to think about repository UUIDs as
anything more than atrivial implementation detail of Subversion. Sometimes, however, there is cause for attention to this detail.

As a genera rule, you want the UUIDs of your live repositories to be unique. That is, after al, the point of having UUIDs. But
there are times when you want the repository UUIDs of two repositories to be exactly the same. For example, if you make a copy
of arepository for backup purposes, you want the backup to be a perfect replica of the original so that, in the event that you have to
restore that backup and replace the live repository, users don't suddenly see what looks like a different repository. When dumping
and loading repository history (as described earlier in the section called “Migrating Repository Data Elsewhere”), you get to decide
whether to apply the UUID encapsulated in the data dump stream to the repository in which you are loading the data. The particu-
lar circumstance will dictate the correct behavior.

There are a couple of ways to set (or reset) arepository's UUID, should you need to. As of Subversion 1.5, thisis as simple as us-
ing the svnadmin setuuid command. If you provide this subcommand with an explicit UUID, it will validate that the UUID is
well-formed and then set the repository UUID to that value. If you omit the UUID, a brand-new UUID will be generated for your
repository.

$ svnl ook uuid /var/svn/repos

Bsynadmin setlog can be called in away that bypasses the hook interface altogether.
4Y ou know—the collective term for all of her “fickle fingers.”

176

Repository Administration

cf 2b9d22- acb5- 11dc- bc8c- 05e83ce5dbec
$ svnadm n setuuid /var/svn/repos # generate a new UU D
$ svnl ook uuid /var/svn/repos
3c3c38f e-acc0-11dc- achc-1b37ff 1c8e7c
$ svnadm n setuuid /var/svn/repos \
cf 2b9d22- acb5- 11dc- bc8c- 05e83cebdbec # restore the old UUI D
$ svnl ook uuid /var/svn/repos
gf2b9d22—acb5-lldc—bc8c—05e83ce5dbec

For folks using versions of Subversion earlier than 1.5, these tasks are a little more complicated. Y ou can explicitly set a reposit-
ory's UUID by piping a repository dump file stub that carries the new UUID specification through svnadnmi n | oad -
-force-uui d REPCS- PATH,

$ svnadmn load --force-uuid /var/svn/repos <<EOF
SVN-f s- dunp- f or mat - versi on: 2

UU D cf 2b9d22- acb5-11dc- bc8c- 05e83ce5dbec
ECF

$ svnl ook uuid /var/svn/repos

cf 2b9d22- acb5-11dc- bc8c- 05e83ce5dbec

$

Having older versions of Subversion generate a brand-new UUID is not quite as simple to do, though. Y our best bet hereisto find
some other way to generate a UUID, and then explicitly set the repository's UUID to that value.

Moving and Removing Repositories

Subversion repository data is wholly contained within the repository directory. As such, you can move a Subversion repository to
some other location on disk, rename a repository, copy a repository, or delete a repository altogether using the tools provided by
your operating system for manipulating directories—mv, cp -a, and rm -r on Unix platforms; copy, move, and rmdir /s /q on
Windows; vast numbers of mouse and menu gyrations in various graphical file explorer applications, and so on.

Of course, there's often till more to be done when trying to cleanly affect changes such as this. For example, you might need to
update your Subversion server configuration to point to the new location of a relocated repository or to remove configuration bits
for a now-deleted repository. If you have automated processes that publish information from or about your repositories, they may
need to be updated. Hook scripts might need to be reconfigured. Users may need to be notified. The list can go on indefinitely, or
at least to the extent that you've built processes and procedures around your Subversion repository.

In the case of a copied repository, you should also consider the fact that Subversion uses repository UUIDs to distinguish repositor-
ies. If you copy a Subversion repository using atypical shell recursive copy command, you'll wind up with two repositories that are
identical in every way—including their UUIDs. In some circumstances, this might be desirable. But in the instances where it is not,
you'll need to generate a new UUID for one of these identical repositories. See the section called “Managing Repository UUIDS’
for more about managing repository UUIDs.

Summary

By now you should have a basic understanding of how to create, configure, and maintain Subversion repositories. We introduced
you to the various tools that will assist you with this task. Throughout the chapter, we noted common administration pitfalls and
offered suggestions for avoiding them.

177

Repository Administration

All that remains is for you to decide what exciting data to store in your repository, and finally, how to make it available over a net-
work. The next chapter is all about networking.

178

Chapter 6. Server Configuration

A Subversion repository can be accessed simultaneously by clients running on the same machine on which the repository resides
using URLs carrying the f i | e: // scheme. But the typical Subversion setup involves a single server machine being accessed
from clients on computers all over the office—or, perhaps, all over the world.

This chapter describes how to get your Subversion repository exposed outside its host machine for use by remote clients. We will
cover Subversion's currently available server mechanisms, discussing the configuration and use of each. After reading this chapter,
you should be able to decide which networking setup is right for your needs, as well as understand how to enable such a setup on
your host computer.

Overview

Subversion was designed with an abstract repository access layer. This means that a repository can be programmatically accessed
by any sort of server process, and the client “repository access’ API allows programmers to write plug-ins that speak relevant net-
work protocols. In theory, Subversion can use an infinite number of network implementations. In practice, there are only two Sub-
version serversin widespread use today.

Apacheis an extremely popular web server; using the mod_dav_svn module, Apache can access arepository and make it available
to clients via the WebDAV/DeltaV protocol, which is an extension of HTTP. Because Apache is an extremely extensible server, it
provides a number of features “for free,” such as encrypted SSL communication, logging, integration with a number of third-party
authentication systems, and limited built-in web browsing of repositories.

In the other corner is svnserve: asmall, lightweight server program that speaks a custom protocol with clients. Because its protocol
is explicitly designed for Subversion and is stateful (unlike HTTP), it provides significantly faster network operations—but at the
cost of some features as well. While it can use SASL to provide a variety of authentication and encryption options, it has no log-
ging or built-in web browsing. It is, however, extremely easy to set up and is often the best option for small teams just starting out
with Subversion.

The network protocol which svnserve speaks may also be tunneled over an SSH connection. This deployment option for svnserve
differs quite a bit in features from a traditional svnserve deployment. SSH is used to encrypt all communication. SSH is also used
exclusively to authenticate, so real system accounts are required on the server host (unlike vanilla svnserve, which has its own
private user accounts). Finally, because this setup requires that each user spawn a private, temporary svnserve process, it's equival-
ent (from a permissions point of view) to allowing a group of local usersto all access the repository viafil e:// URLs. Path-
based access control has no meaning, since each user is accessing the repository database files directly.

Table 6.1, “Comparison of subversion server options’ provides a quick summary of the three typical server deployments.

Table 6.1. Comparison of subversion server options

Feature Apache + mod_dav_svn svnserve svnserve over SSH

Authentication options HTTP Basic or Digest auth,|CRAM-MD5 by default;|SSH
X.509 certificates, LDAP,|LDAP, NTLM, or any other
NTLM, or any other mechan-|mechanism available to SASL

ism available to Apache httpd

User account options Private “users’ file, or other|Private “users’ file, or other|System accounts
mechanisms available to|mechanisms available to SASL
Apache httpd (LDAP, SQL,|(LDAP, SQL, etc.)

etc.)

Authorization options Read/write access can be gran- |Read/write access can be gran- |Read/write access only grant-
ted over the whole repository, |ted over the whole repository, |able over the whole repository
or specified per path or specified per path

Encryption Available via optional SSL|Available via optiona SASL |Inherent in SSH connection

179

Server Configuration

Feature Apache + mod_dav_svn svnserve svnserve over SSH
(https) features

Logging High-level operational logging|High-level operational logging|High-level operational logging
of Subversion operations plus|only only

detailed logging at the per-
HTTP-request level

Interoperability Accessible by other WebDAV |Talks only to svn clients Taksonly to svn clients
clients

Web viewing Limited built-in support, or via|Only via third-party tools such|{Only via third-party tools such
third-party tools such as|asViewVC asViewVC
ViewVC

Master-dave server replication | Transparent write-proxying |Can only create read-only slave|Can only create read-only slave
available from slave to master |servers servers

Speed Somewhat slower Somewhat faster Somewhat faster

Initial setup Somewhat complex Extremely simple Moderately simple

Choosing a Server Configuration

So, which server should you use? Which is best?

Obvioudly, there's no right answer to that question. Every team has different needs, and the different servers all represent different
sets of trade-offs. The Subversion project itself doesn't endorse one server or another, or consider either server more “official” than
another.

Here are some reasons why you might choose one deployment over another, as well as reasons you might not choose one.

The svnserve Server

Why you might want to use it:
» Quick and easy to set up.
» Network protocol is stateful and noticeably faster than WebDAV .
* No need to create system accounts on server.
 Password is not passed over the network.
Why you might want to avoid it:

» By default, only one authentication method is available, the network protocol is not encrypted, and the server stores clear
text passwords. (All these things can be changed by configuring SASL, but it's a bit more work to do.)

* No advanced logging facilities.

» No built-in web browsing. (You'd have to install a separate web server and repository browsing software to add this.)

svnserve over SSH

Why you might want to useit:

180

Server Configuration

» The network protocol is stateful and noticeably faster than WebDAV.
* You can take advantage of existing SSH accounts and user infrastructure.
 All network traffic is encrypted.
Why you might want to avoid it:
» Only one choice of authentication method is available.
» No advanced logging facilities.
* It requires usersto be in the same system group, or use a shared SSH key.

* If used improperly, it can lead to file permission problems.

The Apache HTTP Server

Why you might want to useit:

« |t alows Subversion to use any of the numerous authentication systems already integrated with Apache.

» Thereisno need to create system accounts on the server.

« Full Apachelogging isavailable.

* Network traffic can be encrypted via SSL.

e HTTP(S) can usually go through corporate firewalls.

* Built-in repository browsing is available via web browser.

» Therepository can be mounted as a network drive for transparent version control (see the section called “ Autoversioning”).
Why you might want to avoid it:

» Noticeably slower than svnserve, because HTTP is a statel ess protocol and regquires more network turnarounds.

* Initial setup can be complex.

Recommendations

In general, the authors of this book recommend a vanilla svnserve installation for small teams just trying to get started with a Sub-
version server; it's the simplest to set up and has the fewest maintenance issues. Y ou can always switch to a more complex server
deployment as your needs change.

Here are some general recommendations and tips, based on years of supporting users:

« If you're trying to set up the simplest possible server for your group, a vanilla svnserve installation is the easiest, fastest route.
Note, however, that your repository data will be transmitted in the clear over the network. If your deployment is entirely within
your company's LAN or VPN, thisisn't an issue. If the repository is exposed to the wide-open Internet, you might want to make
sure that either the repository's contents aren't sensitive (e.g., it contains only open source code), or that you go the extramilein
configuring SASL to encrypt network communications.

181

Server Configuration

If you need to integrate with existing legacy identity systems (LDAP, Active Directory, NTLM, X.5009, etc.), you must use either
the Apache-based server or svnserve configured with SASL.

If you've decided to use either Apache or stock svnserve, create a single svn user on your system and run the server process as
that user. Be sure to make the repository directory wholly owned by the svn user as well. From a security point of view, this
keeps the repository data nicely siloed and protected by operating system filesystem permissions, changeable by only the Sub-
version server process itself.

If you have an existing infrastructure that is heavily based on SSH accounts, and if your users already have system accounts on
your server machine, it makes sense to deploy an svnserve-over-SSH solution. Otherwise, we don't widely recommend this op-
tion to the public. It's generally considered safer to have your users access the repository via (imaginary) accounts managed by
svnserve or Apache, rather than by full-blown system accounts. If your deep desire for encrypted communication still draws you
to this option, we recommend using Apache with SSL or svnserve with SASL encryption instead.

Do not be seduced by the simple idea of having all of your users access arepository directly viafi | e: // URLs. Evenif there-
pository is readily available to everyone via a network share, thisis a bad idea. It removes any layers of protection between the
users and the repository: users can accidentally (or intentionally) corrupt the repository database, it becomes hard to take the re-
pository offline for inspection or upgrade, and it can lead to a mess of file permission problems (see the section called
“Supporting Multiple Repository Access Methods’). Note that thisis also one of the reasons we warn against accessing reposit-
oriesviasvn+ssh: // URLs—from a security standpoint, it's effectively the same as local users accessing viafile://,and
it can entail all the same problemsiif the administrator isn't careful.

svnserve, a Custom Server

The svnserve program is a lightweight server, capable of speaking to clients over TCP/IP using a custom, stateful protocol. Clients
contact an svnserve server by using URL s that begin withthesvn: // or svn+ssh: // scheme. This section will explain the dif-
ferent ways of running svnserve, how clients authenticate themselves to the server, and how to configure appropriate access con-
trol to your repositories.

Invoking the Server

There are afew different ways to run the svnserve program:

Run svnserve as a standalone daemon, listening for requests.

Have the Unix inetd daemon temporarily spawn svnserve whenever arequest comes in on acertain port.
Have SSH invoke a temporary svnserve over an encrypted tunnel.

Run svnserve as a Microsoft Windows service.

Run svnserve as alaunchd job.

The following sections will cover in detail these various deployment options for svnserve.

svnserve as daemon

The easiest option is to run svnserve as a standalone “ daemon” process. Usethe - d option for this:

$ svnserve -d

svnserve is now running, listening on port 3690

182

Server Configuration

When running svnserve in daemon mode, you can usethe- - | i st en-port and--1i st en- host optionsto customize the ex-
act port and hostname to “bind” to.

Once we successfully start svnserve as explained previoudly, it makes every repository on your system available to the network. A
client needs to specify an absolute path in the repository URL. For example, if arepository islocated at / var/ svn/ pr oj ect 1,
aclient would reach it viasvn: / / host . exanpl e. conf var/ svn/ proj ect 1. To increase security, you can passthe-r op-
tion to svnserve, which restricts it to exporting only repositories below that path. For example:

$ svnserve -d -r /var/svn

Using the - r option effectively modifies the location that the program treats as the root of the remote filesystem space. Clients
then use URL s that have that path portion removed from them, leaving much shorter (and much lessrevealing) URLSs:

$ svn checkout svn://host. exanpl e.com projectl

svnserve viainetd

If you want inetd to launch the process, you need to passthe-i (- - i net d) option. In the following example, we've shown the
output from running svnserve -i atthe command line, but note that thisisn't how you actually start the daemon; see the para-
graphs following the example for how to configure inetd to start svnserve.

$ svnserve -i
(success (2 2 () (edit-pipeline svndiffl absent-entries commt-revprops d\
epth | og-revprops atom c-revprops partial-replay)))

When invoked with the - - i net d option, svnserve attempts to speak with a Subversion client viast di n and st dout using a
custom protocol. Thisis the standard behavior for a program being run viainetd. The IANA has reserved port 3690 for the Subver-
sion protocol, so on a Unix-like system you can add linesto / et ¢/ ser vi ces such asthese (if they don't aready exist):

svn 3690/t cp # Subversi on
svn 3690/ udp # Subversion

If your system is using a classic Unix-like inetd daemon, you can add thislineto/ et c/ i net d. conf:
svn streamtcp nowait svnowner /usr/bin/svnserve svnserve -i

Make sure “svnowner” is a user that has appropriate permissions to access your repositories. Now, when a client connection comes
into your server on port 3690, inetd will spawn an svnserve process to service it. Of course, you may also want to add - r to the
configuration line as well, to restrict which repositories are exported.

183

Server Configuration

svnserve over a tunnel

Another way to invoke svnserveisin tunnel mode, using the - t option. This mode assumes that a remote-service program such as
rsh or ssh has successfully authenticated a user and is now invoking a private svnserve process as that user. (Note that you, the
user, will rarely, if ever, have reason to invoke svnserve with the - t at the command line; instead, the SSH daemon does so for
you.) The svnserve program behaves normally (communicating via st di n and st dout) and assumes that the traffic is being
automatically redirected over some sort of tunnel back to the client. When svnserve isinvoked by atunnel agent like this, be sure
that the authenticated user has full read and write access to the repository database files. It's essentially the same as alocal user ac-
cessing the repository viafi |l e: // URLs.

This option is described in much more detail |ater in this chapter in the section called “ Tunneling over SSH”.

svnserve as a Windows service

If your Windows system is a descendant of Windows NT (Windows 2000 or newer), you can run svnserve as a standard Windows
service. Thisistypically a much nicer experience than running it as a standal one daemon with the - - daenon (- d) option. Using
daemon mode requires launching a console, typing a command, and then leaving the console window running indefinitely. A Win-
dows service, however, runs in the background, can start at boot time automatically, and can be started and stopped using the same
consistent administration interface as other Windows services.

You'll need to define the new service using the command-line tool SC.EXE. Much like the inetd configuration line, you must spe-
cify an exact invocation of svnserve for Windowsto run at startup time:

C.\> sc create svn
bi npat h= " C:\svn\ bi n\svnserve. exe --service -r C \repos"
di spl aynane= " Subversi on Server"
depend= Tcpip
start= auto

This defines a new Windows service named svn which executes a particular svnserve.exe command when started (in this case,
rooted at C: \ r epos). There are a number of caveatsin the prior example, however.

First, notice that the svnserve.exe program must always be invoked with the - - ser vi ce option. Any other options to svnserve
must then be specified on the same line, but you cannot add conflicting options such as - - daenmon (- d), --tunnel , or -
-inetd (-i). Optionssuchas-r or --1isten-port are fine though. Second, be careful about spaces when invoking the
SC.EXE command: the key= val ue patterns must have no spaces between key= and must have exactly one space before the
val ue. Lastly, be careful about spaces in your command line to be invoked. If a directory name contains spaces (or other charac-
ters that need escaping), place the entire inner value of bi npat h in double quotes, by escaping them:

C.\> sc create svn
bi npat h= "\"C:\ program fil es\svn\ bi n\svnserve. exe\" --service -r C \repos"
di spl aynane= " Subversi on Server"
depend= Tcpip
start= auto

Also note that the word bi npat h is misleading—its value is a command line, not the path to an executable. That's why you need
to surround it with quotesif it contains embedded spaces.

Once the serviceis defined, it can be stopped, started, or queried using standard GUI tools (the Services administrative control pan-
€l), or at the command line:

184

Server Configuration

C:\> net stop svn
C.\> net start svn

The service can also be uninstalled (i.e., undefined) by deleting its definition: sc del et e svn. Just be sure to stop the service
first! The SC.EXE program has many other subcommands and options; runsc / ? to learn more about it.

svnserve as alaunchd job

Mac OS X (10.4 and higher) uses launchd to manage processes (including daemons) both system-wide and per-user. A launchd
job is specified by parameters in an XML property list file, and the launchctl command is used to manage the lifecycle of those
jobs.

When configured to run as alaunchd job, svnserve is automatically launched on demand whenever incoming Subversionsvn: / /
network traffic needs to be handled. This is far more convenient than a configuration which requires you to manually invoke svn-
serve as along-running background process.

To configure svnserve as a launchd job, first creaste a job definition file named /Lib-
rary/ LaunchDaenons/ or g. apache. subver si on. svnserve. pl i st. Example 6.1, “A sample svnserve launchd job
definition” provides an example of such afile.

Example 6.1. A sample svnserve launchd job definition

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE plist PUBLIC "-//Apple//DTD PLI ST 1.0//EN'
"http://ww. appl e. coni DTDs/ PropertyList-1.0.dtd">
<plist version="1.0">
<di ct >
<key>Label </ key>
<string>org. apache. subversi on. svnserve</string>
<key>Servi ceDescri pti on</ key>
<string>Host Subversion repositories using svn:// schene</string>
<key>Pr ogr amAr gunent s</ key>
<array>
<string>/usr/bin/svnserve</string>
<string>--inetd</string>
<string>--root=/var/svn</string>
</ array>
<key>User Name</ key>
<string>svn</string>
<key>G oupNane</ key>
<string>svn</string>
<key>i net dConpati bility</key>

<di ct >
<key>Wi t </ key>
<fal se/ >
</ dict>
<key>Socket s</ key>
<di ct >
<key>Li st ener s</ key>
<array>

<di ct >
<key>SockSer vi ceNane</ key>
<string>svn</string>
<key>Bonj our </ key>
<true/>

185

Server Configuration

</dict>
</array>
</dict>
</dict>
</plist>

The launchd system can be somewhat challenging to learn. Fortunately, documentation exists for the commands de-
scribed in this section. For example, run man | aunchd from the command line to see the manual page for launchd
itself, man | aunchd. pl i st to read about the job definition format, etc.

Once your job definition fileis created, you can activate the job using launchctl load:

$ sudo | aunchct!l |oad \
-w / Li brary/ LaunchDaenons/ or g. apache. subver si on. svnserve. pli st

To be clear, this action doesn't actually launch svnserve yet. It simply tells launchd how to fire up svnserve when incoming net-
working traffic arrives on the svn network port; it will be terminated it after the traffic has been handled.

ministrator. Note also that the User Nanme and G- oupNane keys in the definition file are optional—if omitted, the

<> Because we want svnserve to be a system-wide daemon process, we need to use sudo to manage this job as an ad-
/ job will run as the user who loaded the job.

Deactivating the job is just as easy to do—use launchctl unload:

$ sudo Il aunchctl unload \
-w / Li brary/ LaunchDaenons/ or g. apache. subver si on. svnserve. pl i st

launchctl also provides away for you to query the status of jobs. If the job is loaded, there will be line which matches the Label
specified in the job definition file:

$ sudo launchctl list | grep org.apache. subversion. svnserve
- 0 or g. apache. subver si on. svnserve
$

Built-in Authentication and Authorization

When aclient connects to an svnser ve process, the following things happen:

» The client selects a specific repository.

» The server processes the repository's conf / svnser ve. conf file and begins to enforce any authentication and authorization
policiesit describes.

186

Server Configuration

» Depending on the defined policies, one of the following may occur:
« The client may be allowed to make requests anonymously, without ever receiving an authentication challenge.
¢ The client may be challenged for authentication at any time.

« If operating in tunnel mode, the client will declare itself to be already externally authenticated (typically by SSH).

The svnserve server, by default, knows only how to send a CRAM-M D5 authentication challenge. In essence, the server sends a
small amount of data to the client. The client uses the MD5 hash algorithm to create a fingerprint of the data and password com-
bined, and then sends the fingerprint as a response. The server performs the same computation with the stored password to verify
that the result isidentical. At no point does the actual password travel over the network.

If your svnserve server was built with SASL support, it not only knows how to send CRAM-MD5 challenges, but aso likely
knows awhole host of other authentication mechanisms. See the section called “Using svnserve with SASL” later in this chapter to
learn how to configure SASL authentication and encryption.

It's also possible, of course, for the client to be externally authenticated via a tunnel agent, such as ssh. In that case, the server
simply examines the user it's running as, and uses this name as the authenticated username. For more on this, see the later section,
the section called “ Tunneling over SSH”.

As you've already guessed, a repository's svnser ve. conf fileis the central mechanism for controlling authentication and au-
thorization policies. The file has the same format as other configuration files (see the section called “Runtime Configuration
Ared’): section names are marked by square brackets ([and]), comments begin with hashes (#), and each section contains specif-
ic variablesthat can be set (vari abl e = val ue). Let'swalk through these files and learn how to use them.

Create a users file and realm

For now, the [gener al] section of svnserve. conf has al the variables you need. Begin by changing the values of those
variables. choose aname for afile that will contain your usernames and passwords and choose an authentication realm:

[general] _
password-db = userfile
real m = exanple realm

Ther eal mis aname that you define. It tells clients which sort of “authentication namespace” they're connecting to; the Subver-
sion client displaysit in the authentication prompt and uses it as a key (along with the server's hostname and port) for caching cre-
dentials on disk (see the section called “Caching credentials’). The passwor d- db variable points to a separate file that contains a
list of usernames and passwords, using the same familiar format. For example:

[users]
harry = foopassword
sally = barpassword

The value of passwor d- db can be an absolute or relative path to the users file. For many admins, it's easy to keep the file right
inthe conf/ area of the repository, alongside svnser ve. conf . On the other hand, it's possible you may want to have two or
more repositories share the same usersfile; in that case, the file should probably live in a more public place. The repositories shar-
ing the users file should also be configured to have the same realm, since the list of users essentialy defines an authentication
realm. Wherever the file lives, be sure to set the file's read and write permissions appropriately. If you know which user(s) svn-

1See RFC 2195.

187

Server Configuration

serve will run as, restrict read access to the users file as necessary.

Set access controls

There are two more variables to set in the svnser ve. conf file: they determine what unauthenticated (anonymous) and authen-
ticated users are allowed to do. The variables anon- access and aut h- access can be set to the value none, r ead, or
wr i t e. Setting the value to none prohibits both reading and writing; r ead allows read-only access to the repository, and wr i t e
alows compl ete read/write access to the repository. For example:

[general] _
password-db = userfile
real m = exanple realm

anonynous users can only read the repository
anon- access = read

aut henticated users can both read and wite
aut h-access = wite

The example settings are, in fact, the default values of the variables, should you forget to define them. If you want to be even more
conservative, you can block anonymous access compl etely:

[general] _
password-db = userfile
realm= exanple realm

anonynous users aren't all owed
anon- access = none

aut henticated users can both read and wite
aut h-access = wite

The server process understands not only these “blanket” access controls to the repository, but also finer-grained access restrictions
placed on specific files and directories within the repository. To make use of this feature, you need to define a file containing more
detailed rules, and then set the aut hz- db variable to point to it:

[general] _
password-db = userfile
real m = exanple realm

Specific access rules for specific locations
aut hz-db = authzfile

We discuss the syntax of the aut hzf i | e filein detail later in this chapter, in the section called “Path-Based Authorization”. Note
that the aut hz- db variable isn't mutually exclusive with the anon- access and aut h- access variables; if al the variables
are defined at once, all of the rules must be satisfied before accessis allowed.

Using svnserve with SASL

For many teams, the built-in CRAM-MD5 authentication is al they need from svnserve. However, if your server (and your Sub-

188

Server Configuration

version clients) were built with the Cyrus Simple Authentication and Security Layer (SASL) library, you have a number of authen-
tication and encryption options available to you.

What Is SASL?

The Cyrus Simple Authentication and Security Layer is open source software written by Carnegie Méellon University. It adds
generic authentication and encryption capabilities to any network protocol, and as of Subversion 1.5 and later, both the svn-
serve server and svn client know how to make use of this library. It may or may not be available to you: if you're building
Subversion yourself, you'll need to have at least version 2.1 of SASL installed on your system, and you'll need to make sure
that it's detected during Subversion's build process. The Subversion command-line client will report the availability of Cyrus
SASL when you run svn - -ver si on; if you're using some other Subversion client, you might need to check with the
package maintainer as to whether SASL support was compiled in.

SASL comes with a number of pluggable modules that represent different authentication systems: Kerberos (GSSAPI),
NTLM, One-Time-Passwords (OTP), DIGEST-MD5, LDAP, Secure-Remote-Password (SRP), and others. Certain mechan-
isms may or may not be available to you; be sure to check which modules are provided.

Y ou can download Cyrus SASL (both code and documentation) from http://asg.web.cmu.edu/sasl/sasl -library.html.

Normally, when a subversion client connects to svnser ve, the server sends a greeting that advertises a list of the capabilities it sup-
ports, and the client responds with a similar list of capabilities. If the server is configured to require authentication, it then sends a
challenge that lists the authentication mechanisms available; the client responds by choosing one of the mechanisms, and then au-
thentication is carried out in some number of round-trip messages. Even when SASL capabilities aren't present, the client and serv-
er inherently know how to use the CRAM-MD5 and ANONY MOUS mechanisms (see the section called “Built-in Authentication
and Authorization”). If server and client were linked against SASL, a number of other authentication mechanisms may aso be
available. However, you'll need to explicitly configure SASL on the server side to advertise them.

Authenticating with SASL

To activate specific SASL mechanisms on the server, you'll need to do two things. First, create a[sasl] section in your reposit-
ory'ssvnser ve. conf filewith aninitial key-value pair:

[sasl]
use-sasl = true

Second, create a main SASL configuration file called svn. conf in a place where the SASL library can find it—typically in the
directory where SASL plug-ins are located. You'll have to locate the plug-in directory on your particular system, such as /
usr/lib/sasl 2/ or/etc/sasl 2/.(Notethat thisisnot thesvnser ve. conf filethat lives within arepository!)

On aWindows server, you'll also have to edit the system registry (using atool such as regedit) to tell SASL where to find things.
Create aregistry key named [HKEY _LOCAL_MACHI NE\ SOFTWARE\ Car negi e Mel | on\ Proj ect Cyrus\ SASL Li b-
rary], and place two keys inside it: a key called Sear chPat h (whose value is a path to the directory containing the SASL
sasl *. dl | plug-in libraries), and a key called Conf Fi | e (whose vaue is a path to the parent directory containing the
svn. conf fileyou created).

Because SASL provides so many different kinds of authentication mechanisms, it would be foolish (and far beyond the scope of
this book) to try to describe every possible server-side configuration. Instead, we recommend that you read the documentation sup-
plied inthedoc/ subdirectory of the SASL source code. It goesinto great detail about every mechanism and how to configure the
server appropriately for each. For the purposes of this discussion, we'll just demonstrate a simple example of configuring the DI-
GEST-MD5 mechanism. For example, if your subver si on. conf (or svn. conf) file contains the following:

pwcheck_met hod: auxprop

189

http://asg.web.cmu.edu/sasl/sasl-library.html

Server Configuration

auxprop_pl ugi n: sasl db
sasl db_path: /etc/my_sasl db
mech_|ist: DI GEST- MD5

you've told SASL to advertise the DIGEST-MD5 mechanism to clients and to check user passwords against a private password
database located at / et ¢/ ny_sasl db. A system administrator can then use the saslpasswd2 program to add or modify user-
names and passwords in the database:

$ sasl passwd2 -c -f /etc/nmy_sasldb -u real musernanme

A few words of warning: first, make sure the “realm” argument to saslpasswd?2 matches the same realm you've defined in your re-
pository's svnser ve. conf file; if they don't match, authentication will fail. Also, due to a shortcoming in SASL, the common
realm must be a string with no space characters. Finally, if you decide to go with the standard SASL password database, make sure
the svnserve program has read access to the file (and possibly write access as well, if you're using a mechanism such as OTP).

This is just one simple way of configuring SASL. Many other authentication mechanisms are available, and passwords can be
stored in other places such asin LDAP or a SQL database. Consult the full SASL documentation for details.

Remember that if you configure your server to only alow certain SASL authentication mechanisms, this forces all connecting cli-
ents to have SASL support as well. Any Subversion client built without SASL support (which includes al pre-1.5 clients) will be
unable to authenticate. On the one hand, this sort of restriction may be exactly what you want (“My clients must al use
Kerberos!™). However, if you still want non-SASL clients to be able to authenticate, be sure to advertise the CRAM-MD5 mechan-
ism as an option. All clients are able to use CRAM-MD5, whether they have SASL capabilities or not.

SASL encryption

SASL is aso able to perform data encryption if a particular mechanism supports it. The built-in CRAM-MD5 mechanism doesn't
support encryption, but DIGEST-MD5 does, and mechanisms such as SRP actually require use of the OpenSSL library. To enable
or disable different levels of encryption, you can set two valuesin your repository'ssvnser ve. conf file:

[sasl]

use-sasl = true

m n-encryption = 128
max- encryption = 256

The m n-encrypti on and nax- encrypti on variables control the level of encryption demanded by the server. To disable
encryption completely, set both values to 0. To enable simple checksumming of data (i.e., prevent tampering and guarantee data in-
tegrity without encryption), set both values to 1. If you wish to allow—but not require—encryption, set the minimum value to 0,
and the maximum value to some hit length. To require encryption unconditionally, set both values to numbers greater than 1. In our
previous example, we require clients to do at least 128-bit encryption, but no more than 256-bit encryption.

Tunneling over SSH

svnser ve's built-in authentication (and SASL support) can be very handy, because it avoids the need to create real system accounts.
On the other hand, some administrators already have well-established SSH authentication frameworks in place. In these situations,
all of the project's users already have system accounts and the ability to “ SSH into” the server machine.

It's easy to use SSH in conjunction with svnserve. The client simply usesthesvn+ssh: // URL scheme to connect:

190

Server Configuration

$ whoam
harry

$ svn list svn+ssh://host.exanpl e. conl repos/ proj ect
harryssh@ost. exanpl e. coni s password: *****

f oo
bar
baz

In this example, the Subversion client isinvoking alocal ssh process, connecting to host . exanpl e. com authenticating as the
user har r yssh (according to SSH user configuration), then spawning a private svnser ve process on the remote machine running
as the user harryssh. The svnserve command is being invoked in tunnel mode (-t), and its network protocol is being
“tunneled” over the encrypted connection by ssh, the tunnel agent. If the client performs a commit, the authenticated username
har r yssh will be used as the author of the new revision.

The important thing to understand here is that the Subversion client is not connecting to a running svnserve daemon. This method
of access doesn't require adaemon, nor does it notice one if present. It relies wholly on the ability of ssh to spawn atemporary svn-
serve process, which then terminates when the network connection is closed.

When using svn+ssh: // URLSsto access a repository, remember that it's the ssh program prompting for authentication, and not
the svn client program. That means there's no automatic password-caching going on (see the section called “Caching credentials”).
The Subversion client often makes multiple connections to the repository, though users don't normally notice this due to the pass-
word caching feature. When using svn+ssh: // URLs, however, users may be annoyed by ssh repeatedly asking for a password
for every outbound connection. The solution is to use a separate SSH password-caching tool such as ssh-agent on a Unix-like sys-
tem, or pageant on Windows.

When running over a tunnel, authorization is primarily controlled by operating system permissions to the repository's database
files; it's very much the same as if Harry were accessing the repository directly viaafil e: // URL. If multiple system users are
going to be accessing the repository directly, you may want to place them into a common group, and you'll need to be careful about
umasks (be sure to read the section called “ Supporting Multiple Repository Access Methods’ later in this chapter). But even in the
case of tunneling, you can still use the svnser ve. conf file to block access, by simply setting aut h- access = read or
aut h-access = none.?

You'd think that the story of SSH tunneling would end here, but it doesn't. Subversion allows you to create custom tunnel behavi-
ors in your runtime conf i g file (see the section called “Runtime Configuration Area’). For example, suppose you want to use
RSH instead of SSH.2 In the[t unnel s] section of your conf i g file, simply defineit like this:

[tunnel s]
rsh = rsh

And now, you can use this new tunnel definition by using a URL scheme that matches the name of your new variable:
svn+rsh: // host/ pat h. When using the new URL scheme, the Subversion client will actually be running the command r sh
host svnserve -t behind the scenes. If you include ausername in the URL (e.g., svn+rsh: // user nane@ost / pat h),
the client will also include that in its command (r sh user name@ ost svnserve -t). But you can define new tunneling
schemes to be much more clever than that:

°Note that usi ng any sort of svnserve-enforced access control at all isabit pointless; the user already has direct access to the repository database.
e don't actually recommend this, since RSH is notably |ess secure than SSH.

191

Server Configuration

[tunnel s]
Joessh = $JOESSH /opt/alternate/ssh -p 29934

This example demonstrates a couple of things. First, it shows how to make the Subversion client launch a very specific tunneling
binary (the one located at / opt / al t er nat e/ ssh) with specific options. In this case, accessing an svn+j oessh: // URL
would invoke the particular SSH binary with - p 29934 as arguments—useful if you want the tunnel program to connect to a
nonstandard port.

Second, it shows how to define a custom environment variable that can override the name of the tunneling program. Setting the
SVN_SSH environment variable is a convenient way to override the default SSH tunnel agent. But if you need to have severa dif-
ferent overrides for different servers, each perhaps contacting a different port or passing a different set of options to SSH, you can

use the mechanism demonstrated in this example. Now if we were to set the JOESSH environment variable, its value would over-
ride the entire value of the tunnel variable—$JOESSH would be executed instead of / opt / al t ernat e/ ssh -p 29934.

SSH Configuration Tricks

It's possible to control not only the way in which the client invokes ssh, but also to control the behavior of sshd on your server ma-
chine. In this section, we'll show how to control the exact svnserve command executed by sshd, as well as how to have multiple
users share a single system account.

Initial setup

To begin, locate the home directory of the account you'll be using to launch svnserve. Make sure the account has an SSH public/
private keypair installed, and that the user can log in via public-key authentication. Password authentication will not work, since all
of the following SSH tricks revolve around using the SSH aut hori zed_keys file.

If it doesn't already exist, create the aut hori zed_keys file (on Unix, typically ~/ . ssh/ aut hori zed_keys). Each linein
thisfile describes a public key that is allowed to connect. The lines are typically of the form:

ssh-dsa AAAABt ce9euch...user @xanpl e. com

The first field describes the type of key, the second field is the base64-encoded key itself, and the third field is a comment.
However, it's alesser known fact that the entire line can be preceded by aconmand field:

conmmand="pr ogrant ssh-dsa AAAABt ce9euch...user @xanpl e. com

When the command field is set, the SSH daemon will run the named program instead of the typical tunnel-mode svnserve invoca
tion that the Subversion client asks for. This opens the door to a number of server-side tricks. In the following examples, we abbre-
viate the lines of thefile as:

conmand="prograni’ TYPE KEY COMVENT

Controlling the invoked command

192

Server Configuration

Because we can specify the executed server-side command, it's easy to name a specific svnserve binary to run and to pass it extra
arguments:

conmmand="/pat h/to/svnserve -t -r /virtual/root" TYPE KEY COVMENT

Inthisexample, / pat h/ t o/ svnser ve might be a custom wrapper script around svnserve which sets the umask (see the section
called “ Supporting Multiple Repository Access Methods'). It also shows how to anchor svnservein avirtua root directory, just as
one often does when running svnserve as a daemon process. This might be done either to restrict access to parts of the system, or
simply to relieve the user of having to type an absolute path in thesvn+ssh: // URL.

It's also possible to have multiple users share a single account. Instead of creating a separate system account for each user, generate
a public/private key pair for each person. Then place each public key into the aut hori zed_keys file, one per line, and use the
- -tunnel - user option:

conmand="svnserve -t --tunnel-user=harry" TYPE1 KEYl harry@xanpl e.com
command="svnserve -t --tunnel-user=sally" TYPE2 KEY2 sal |l y@xanpl e.com

This example allows both Harry and Sally to connect to the same account via public key authentication. Each of them has a custom
command that will be executed; the - - t unnel - user option tells svnserve to assume that the named argument is the authentic-
ated user. Without - - t unnel - user , it would appear as though all commits were coming from the one shared system account.

A final word of caution: giving a user access to the server via public-key in a shared account might still allow other forms of SSH
access, even if you've set the conmand value in aut hori zed_keys. For example, the user may still get shell access through
SSH or be able to perform X11 or general port forwarding through your server. To give the user as little permission as possible,
you may want to specify anumber of restrictive optionsimmediately after the cormand:

conmmand="svnserve -t --tunnel -user=harry", no-port-forwardi ng, no-agent-forw
ardi ng, no- X11- f orwar di ng, no- pty TYPE1 KEY1 harry@xanpl e. com

Note that thisall must be on one line—truly on one line—since SSH aut hor i zed_keys filesdo not even allow the convention-
al backdash character (\) for line continuation. The only reason we've shown it with aline break isto fit it on the physical page of
a book.

httpd, the Apache HTTP Server

The Apache HTTP Server is a“heavy-duty” network server that Subverson can leverage. Viaa custom module, httpd makes Sub-
version repositories available to clients via the WebDAV/Deltav* protocol, which is an extension to HTTP 1.1. This protocol takes
the ubiquitous HTTP protocol that is the core of the World Wide Web, and adds writing—specifically, versioned writ-
ing—capabilities. The result is a standardized, robust system that is conveniently packaged as part of the Apache 2.0 software, sup-
ported by numerous operating systems and third-party products, and doesn't require network administrators to open up yet another
custom port.5 While an Apache-Subversion server has more features than svnserve, it's also a bit more difficult to set up. With
flexibility often comes more complexity.

Much of the following discussion includes references to Apache configuration directives. While some examples are given of the

4see http://www.webdav.org/.
5They really hate doing that.

193

http://www.webdav.org/

Server Configuration

use of these directives, describing them in full is outside the scope of this chapter. The Apache team maintains excellent document-
ation, publicly available on their web site at http://httpd.apache.org. For example, a general reference for the configuration direct-
ivesislocated at http://httpd.apache.org/docs-2.0/mod/directives.html.

Also, as you make changes to your Apache setup, it is likely that somewhere along the way a mistake will be made. If you are not
already familiar with Apache's logging subsystem, you should become aware of it. In your ht t pd. conf file are directives that
specify the on-disk locations of the access and error logs generated by Apache (the Cust onlLog and Er r or Log directives, re-
spectively). Subversion's mod_dav_svn uses Apache's error logging interface as well. You can always browse the contents of
those files for information that might reveal the source of a problem that is not clearly noticeable otherwise.

Prerequisites

To network your repository over HTTP, you basically need four components, available in two packages. You'll need Apache httpd
2.0 or newer, the mod_dav DAV module that comes with it, Subversion, and the mod_dav_svn filesystem provider module dis-
tributed with Subversion. Once you have al of those components, the process of networking your repository is as simple as:

 Getting httpd up and running with the mod_dav module
* Installing the mod_dav_svn backend to mod_dav, which uses Subversion's libraries to access the repository

« Configuring your ht t pd. conf fileto export (or expose) the repository

Y ou can accomplish the first two items either by compiling httpd and Subversion from source code or by installing prebuilt binary
packages of them on your system. For the most up-to-date information on how to compile Subversion for use with the Apache HT-
TP Server, as well as how to compile and configure Apache itself for this purpose, see the | NSTALL file in the top level of the
Subversion source code tree.

Basic Apache Configuration

Once you have all the necessary components installed on your system, all that remains is the configuration of Apache viaits ht -

t pd. conf file. Instruct Apache to load the mod_dav_svn module using the LoadModul e directive. This directive must precede
any other Subversion-related configuration items. If your Apache was installed using the default layout, your mod_dav_svn mod-
ule should have been installed in the nodul es subdirectory of the Apache install location (often/ usr/ | ocal / apache?2). The
LoadModul e directive has a simple syntax, mapping a named module to the location of a shared library on disk:

LoadModul e dav_svn_nodul e nmodul es/ nod_dav_svn. so

Apache interprets the LoadMbdul e configuration item's library path as relative to its own server root. If configured as previously
shown, Apache will look for the Subversion DAV module shared library in its own nmodul es/ subdirectory. Depending on how
Subversion was installed on your system, you might need to specify a different path for thislibrary altogether, perhaps even an ab-
solute path such as in the following example:

LoadModul e dav_svn_nodul e C./ Subversion/lib/nod_dav_svn. so

Note that if mod_dav was compiled as a shared object (instead of statically linked directly to the httpd binary), you'll need a simil-
ar LoadMbdul e statement for it, too. Be sure that it comes before the mod_dav_svn line:

194

http://httpd.apache.org
http://httpd.apache.org/docs-2.0/mod/directives.html

Server Configuration

LoadModul e dav_nodul e nodul es/ nod_dav. so
LoadModul e dav_svn_nodul e nmodul es/ nod_dav_svn. so

At alater location in your configuration file, you now need to tell Apache where you keep your Subversion repository (or reposit-
ories). The Locat i on directive has an XML-like notation, starting with an opening tag and ending with a closing tag, with vari-
ous other configuration directives in the middle. The purpose of the Locat i on directive is to instruct Apache to do something
special when handling requests that are directed at a given URL or one of its children. In the case of Subversion, you want Apache
to simply hand off support for URLSs that point at versioned resources to the DAV layer. You can instruct Apache to delegate the
handling of all URLs whose path portions (the part of the URL that follows the server's name and the optional port number) begin
with / r epos/ to a DAV provider whose repository is located at / var / svn/ r eposi t or y using the following ht t pd. conf

syntax:

<Location /repos>

DAV svn

SVNPat h /var/svn/repository
</ Locati on>

If you plan to support multiple Subversion repositories that will reside in the same parent directory on your local disk, you can use
an alternative directive—SVNPar ent Pat h—to indicate that common parent directory. For example, if you know you will be cre-
ating multiple Subversion repositories in a directory /var/svn that would be accessed via URLs such as ht-
tp://my.server.conisvn/reposl, http://my.server.conisvn/repos2, and so on, you could use the ht -
t pd. conf configuration syntax in the following example:

<Location /svn>
DAV svn

Automatically map any "/svn/foo" URL to repository /var/svn/foo
SVNPar ent Pat h /var/svn
</ Locati on>

Using this syntax, Apache will delegate the handling of all URLs whose path portions begin with / svn/ to the Subversion DAV
provider, which will then assume that any items in the directory specified by the SVNPar ent Pat h directive are actually Subver-
sion repositories. Thisis aparticularly convenient syntax in that, unlike the use of the SVNPat h directive, you don't have to restart
Apache to add or remove hosted repositories.

Be sure that when you define your new Locat i on, it doesn't overlap with other exported locations. For example, if your main
Docunent Root is exported to / www, do not export a Subversion repository in <Locati on /ww repos>. If a request
comes in for the URI / ww/ r epos/ f 0o. ¢, Apache won't know whether to look for afiler epos/ f 0o. ¢ in the Docunent -
Root , or whether to delegate mod_dav_svn to return f 00. ¢ from the Subversion repository. The result is often an error from the
server of theform 301 Moved Pernmanently.

Server Names and the COPY Request

Subversion makes use of the COPY request type to perform server-side copies of files and directories. As part of the sanity
checking done by the Apache modules, the source of the copy is expected to be located on the same machine as the destina-
tion of the copy. To satisfy this requirement, you might need to tell mod_dav the name you use as the hostname of your
server. Generaly, you can usethe Ser ver Nane directivein ht t pd. conf to accomplish this.

195

Server Configuration

Server Nanme svn. exanpl e. com

If you are using Apache's virtual hosting support viathe NameVi r t ual Host directive, you may need to use the Ser ver -
Al'i as directive to specify additional names by which your server is known. Again, refer to the Apache documentation for
full details.

At this stage, you should strongly consider the question of permissions. If you've been running Apache for some time now as your
regular web server, you probably already have a collection of content—web pages, scripts, and such. These items have already
been configured with a set of permissions that allows them to work with Apache, or more appropriately, that allows Apache to
work with those files. Apache, when used as a Subversion server, will also need the correct permissions to read and write to your
Subversion repository.

Y ou will need to determine a permission system setup that satisfies Subversion's requirements without messing up any previously
existing web page or script installations. This might mean changing the permissions on your Subversion repository to match those
in use by other things that Apache servesfor you, or it could mean using the User and Gr oup directivesin ht t pd. conf to spe-
cify that Apache should run as the user and group that owns your Subversion repository. There is no single correct way to set up
your permissions, and each administrator will have different reasons for doing things a certain way. Just be aware that permission-re-
lated problems are perhaps the most common oversight when configuring a Subversion repository for use with Apache.

Authentication Options

At this point, if you configured ht t pd. conf to contain something such as the following:

<Location /svn>

DAV svn

SVNPar ent Pat h /var/svn
</ Locati on>

your repository is “anonymously” accessible to the world. Until you configure some authentication and authorization policies, the
Subversion repositories that you make available via the Locat i on directive will be generally accessible to everyone. In other
words:

» Anyone can use a Subversion client to check out aworking copy of arepository URL (or any of its subdirectories).

» Anyone can interactively browse the repository's latest revision simply by pointing aweb browser to the repository URL.

* Anyone can commit to the repository.

Of course, you might have already set up apr e- conmi t hook script to prevent commits (see the section called “Implementing

Repository Hooks"). But as you read on, you'll see that it's also possible to use Apache's built-in methods to restrict access in spe-
cific ways.

Requiring authentication defends against invalid users directly accessing the repository, but does not guard the pri-
_) vacy of valid users network activity. See the section called “Protecting network traffic with SSL” for how to config-
ure your server to support SSL encryption, which can provide that extralayer of protection.

196

Server Configuration

Basic authentication

The easiest way to authenticate a client is viathe HTTP Basic authentication mechanism, which simply uses a username and pass-
word to verify a user'sidentity. Apache provides the htpasswd util ity6 for managing files containing usernames and passwords.

Basic authentication is extremely insecure, because it sends passwords over the network in very nearly plain text. See
the section called “ Digest authentication” for details on using the much safer Digest mechanism.

First, create a password file and grant access to users Harry and Sally:

$ ### First tine: use -c to create the file

$ ### Use -mto use MD5 encryption of the password, which is nore secure
$ htpasswd -c¢c -m/etc/svn-auth. ht passwd harry

New password; ***x**

Re-type new password: *****

Addi ng password for user harry

$ htpasswd -m/etc/svn-auth. ht passwd sal |y

New password: *****x*x*

Re-type new password: *****x*x*

g\ddi ng password for user sally

Next, add some more directivesinside the <Locat i on> block to tell Apache how to use the password file;

<Location /svn>
DAV svn
SVNPar ent Pat h /var/ svn

Aut hentication: Basic

Aut hName " Subversi on repository”

Aut hType Basic

Aut hUser Fi | e /etc/svn-auth. ht passwd
</ Locati on>

These directives work as follows:

e Aut hNarre is an arbitrary name that you choose for the authentication domain. Most browsers display this name in the dialog
box when prompting for username and password.

* Aut hType specifies the type of authentication to use.

e Aut hUser Fi | e specifiesthe location of the password file to use.

However, this <Locat i on> block doesn't yet do anything useful. It merely tells Apache that if authorization were required, it

should challenge the Subversion client for a username and password. (When authorization is required, Apache requires authentica-

tion aswell.) What's missing here, however, are directives that tell Apache which sorts of client requests require authorization; cur-
rently, none do. The simplest thing is to specify that all requests require authorization by adding Requi re val i d- user to the

bSee http://httpd.apache.org/docs/current/programs/htpasswd.html.

197

http://httpd.apache.org/docs/current/programs/htpasswd.html

Server Configuration

block:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/ svn

Aut hentication: Basic

Aut hName " Subversion repository”

Aut hType Basic

Aut hUser Fi | e /etc/svn-auth. ht passwd

Aut horization: Authenticated users only
Require vali d-user
</ Locat i on>

Refer to the section called “ Authorization Options” for more detail on the Requi r e directive and other ways to set authorization
policies.

Digest authentication

Digest authentication is an improvement on Basic authentication which allows the server to verify a client's identity without send-
ing the password over the network unprotected. Both client and server create a non-reversible MD5 hash of the username, pass-
word, requested URI, and a nonce (number used once) provided by the server and changed each time authentication is required.
The client sendsiits hash to the server, and the server then verifies that the hashes match.

Configuring Apache to use Digest authentication is straightforward, with only small variations on our prior example:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/svn

Aut hentication: Digest

Aut hNane " Subversion repository”
Aut hType Di gest

Aut hUser Fi | e /etc/svn-auth. ht di gest

Aut hori zation: Authenticated users only
Require valid-user
</ Locati on>

Notice that Aut hType isnow set to Di gest , and we specify a different path for Aut hUser Fi | e. Digest authentication uses a
different file format than Basic authentication; it is created using Apache's htdigest utility7 rather than htpasswd. Digest authentic-
ation aso has the additional concept of a“realm”, which must match the value of the Aut hNare directive. The password file can
be created asfollows:

$ ### First tine: use -c to create the file

$ htdigest -c /etc/svn-auth. htdi gest "Subversion repository" harry
Addi ng password for harry in real m Subversion repository.

New password; *****

Re-type new password; *****

$ htdigest /etc/svn-auth. htdi gest "Subversion repository" sally

"See http://httpd.apache.org/docs/current/programs/htdigest.html.

198

http://httpd.apache.org/docs/current/programs/htdigest.html

Server Configuration

Addi ng user sally in real m Subversion repository
New password: **x***x*
Re-type new password: *****x*x*

Authorization Options

At this point, you've configured authentication, but not authorization. Apacheis able to challenge clients and confirm identities, but
it has not been told how to allow or restrict access to the clients bearing those identities. This section describes two strategies for
controlling access to your repositories.

Blanket access control

The simplest form of access control is to authorize certain users for either read-only access to a repository or read/write accessto a
repository.

You can restrict access on all repository operations by adding Requi re val i d- user directly inside the <Locat i on> block.
The example from the section called “Digest authentication” allows only clients that successfully authenticate to do anything with
the Subversion repository:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/svn

Aut hentication: Digest

Aut hName " Subversion repository"
Aut hType Di gest

Aut hUser Fi | e /etc/ svn-auth. ht di gest

Aut hori zation: Authenticated users only
Require valid-user
</ Locati on>

Sometimes you don't need to run such a tight ship. For example, Subversion's own source code repository at ht-
tp://svn.collab.net/repos/svn allows anyone in the world to perform read-only repository tasks (such as checking out working cop-
ies and browsing the repository), but restricts write operations to authenticated users. The Li it and Li mi t Except directives
allow for this type of selective restriction. Like the Locat i on directive, these blocks have starting and ending tags, and you
would nest them inside your <Locat i on> block.

The parameters present onthe Li mi t and Li mi t Except directives are HTTP request types that are affected by that block. For
example, to allow anonymous read-only operations, you would use the Li mi t Except directive (passing the GET, PROPFI ND,
OPTI ONS, and REPORT request type parameters) and place the previously mentioned Requi re val i d- user directive inside
the<Li m t Except > block instead of just inside the <Locat i on> block.

<Location /svn>
DAV svn
SVNPar ent Pat h /var/ svn

Aut henti cation: Di gest
Aut hNane " Subversi on repository"
Aut hType Di gest

199

http://svn.collab.net/repos/svn
http://svn.collab.net/repos/svn

Server Configuration

Aut hUser Fil e /etc/svn-auth. htdi gest

Aut horization: Authenticated users only for non-read-only
(wite) operations; allow anonynous reads
<Li m t Except GET PROPFI ND OPTI ONS REPORT>
Require valid-user
</ LimtExcept>
</ Locati on>

These are only a few simple examples. For more in-depth information about Apache access control and the Requi r e directive,
take a look a the Security section of the Apache documentation's tutorials collection a ht-
tp://httpd.apache.org/docs-2.0/misc/tutorial s.html.

Per-directory access control

It's possible to set up finer-grained permissions using mod_authz_svn. This Apache module grabs the various opaque URLS
passing from client to server, asks mod_dav_svn to decode them, and then possibly vetoes requests based on access policies
defined in a configuration file.

If you've built Subversion from source code, mod_authz_svn is automatically built and installed alongside mod_dav_svn. Many
binary distributions install it automatically as well. To verify that it's installed correctly, make sure it comes right after
mod_dav_svn'sLoadModul e directiveinht t pd. conf :

LoadModul e dav_nodul e nmodul es/ nod_dav. so
LoadModul e dav_svn_nodul e nmodul es/ nod_dav_svn. so
LoadModul e aut hz_svn_nodul e nmodul es/ nod_aut hz_svn. so

To activate this module, you need to configure your <Locat i on> block to use the Aut hzSVNAccessFi | e directive, which
specifies a file containing the permissions policy for paths within your repositories. (In a moment, we'll discuss the format of that
file)

Apache is flexible, so you have the option to configure your block in one of three general patterns. To begin, choose one of these
basic configuration patterns. (The following examples are very simple; look at Apache's own documentation for much more detail
on Apache authentication and authorization options.)

The most open approach is to allow access to everyone. This means Apache never sends authentication challenges, and all users
aretreated as “anonymous’. (See Example 6.2, “ A sample configuration for anonymous access’.)

Example 6.2. A sample configuration for anonymous access

<Location /repos>
DAV svn
SVNPar ent Pat h /var/svn

Aut hentication: None
Aut hori zati on: Pat h-based access contr ol

Aut hzSVNAccessFil e /path/to/access/file
</ Locati on>

200

http://httpd.apache.org/docs-2.0/misc/tutorials.html
http://httpd.apache.org/docs-2.0/misc/tutorials.html

Server Configuration

On the opposite end of the paranocia scale, you can configure Apache to authenticate al clients. This block unconditionally requires
authentication viathe Requi re val i d- user directive, and defines a means to authenticate valid users. (See Example 6.3, “A
sample configuration for authenticated access’.)

Example 6.3. A sample configuration for authenticated access

<Location /repos>
DAV svn
SVNPar ent Pat h /var/svn

Aut henti cation: Digest

Aut hNane " Subversi on repository"
Aut hType Di gest

Aut hUser Fil e /etc/svn-auth. htdi gest

Aut hori zation: Path-based access control; authenticated users only
Aut hzSVNAccessFil e /path/to/access/file
Require vali d-user

</ Locati on>

A third very popular pattern is to allow a combination of authenticated and anonymous access. For example, many administrators
want to allow anonymous users to read certain repository directories, but restrict access to more sensitive areas to authenticated
users. In this setup, all users start out accessing the repository anonymously. If your access control policy demands areal username
at any point, Apache will demand authentication from the client. To do this, use both the Sat i sfy Any and Requi re val i d-

user directives. (See Example 6.4, “ A sample configuration for mixed authenticated/anonymous access”.)

Example 6.4. A sample configuration for mixed authenticated/anonymous access

<Location /repos>
DAV svn
SVNPar ent Pat h /var/ svn

Aut hentication: Digest

Aut hName " Subversion repository"
Aut hType Di gest

Aut hUser Fil e /etc/svn-auth. ht di gest

Aut hori zation: Path-based access control; try anonynous access

first, but authenticate if necessary
Aut hzSVNAccessFil e /path/to/access/file
Satisfy Any

Requi re vali d-user
</ Locati on>

The next step is to create the authorization file containing access rules for particular paths within the repository. We describe how
later in this chapter, in the section called “ Path-Based Authorization”.

Disabling path-based checks

The mod_dav_svn module goes through a lot of work to make sure that data you've marked “unreadable” doesn't get accidentally
leaked. This means it needs to closely monitor all of the paths and file-contents returned by commands such as svn checkout and

201

Server Configuration

svn update. If these commands encounter a path that isn't readable according to some authorization policy, the path is typically
omitted altogether. In the case of history or rename tracing—for example, running a command such as svn cat -r OLD
f 00. ¢ on afile that was renamed long ago—the rename tracking will simply halt if one of the object's former names is determ-
ined to be read-restricted.

All of this path checking can sometimes be quite expensive, especially in the case of svn log. When retrieving alist of revisions,
the server looks at every changed path in each revision and checks it for readability. If an unreadable path is discovered, it's omit-
ted from the list of the revision's changed paths (normally seen with the - - ver bose (- v) option), and the whole log message is
suppressed. Needless to say, this can be time-consuming on revisions that affect alarge number of files. Thisisthe cost of security:
even if you haven't configured a module such as mod_authz_svn at all, the mod_dav_svn module is still asking Apache httpd to
run authorization checks on every path. The mod_dav_svn module has no idea what authorization modules have been installed, so
all it can do is ask Apache to invoke whatever might be present.

On the other hand, there's also an escape hatch of sorts, which allows you to trade security features for speed. If you're not enfor-
cing any sort of per-directory authorization (i.e., not using mod_authz_svn or similar module), you can disable all of this path
checking. In your ht t pd. conf file, use the SYNPat hAut hz directive as shown in Example 6.5, “Disabling path checks alto-
gether”.

Example 6.5. Disabling path checks altogether

<Location /repos>
DAV svn
SVNPar ent Pat h /var/ svn

SVNPat hAut hz of f
</ Locati on>

The SVNPat hAut hz directive is “on” by default. When set to “off,” all path-based authorization checking is disabled;
mod_dav_svn stops invoking authorization checks on every path it discovers.

Protecting network traffic with SSL

Connecting to arepository viaht t p: / / meansthat all Subversion activity is sent across the network in the clear. This means that
actions such as checkouts, commits, and updates could potentially be intercepted by an unauthorized party “sniffing” network
traffic. Encrypting traffic using SSL is a good way to protect potentially sensitive information over the network.

If a Subversion client is compiled to use OpenSSL, it gains the ability to speak to an Apache server viahtt ps: // URLSs, so al

traffic is encrypted with a per-connection session key. The WebDAYV library used by the Subversion client is not only able to veri-
fy server certificates, but can also supply client certificates when challenged by the server.

Subversion server SSL certificate configuration

It's beyond the scope of this book to describe how to generate client and server SSL certificates and how to configure Apache to
use them. Many other references, including Apache's own documentation, describe the process.

SSL certificates from well-known entities generally cost money, but at a bare mini mumé you can configure Apache to
_) use aself-signed certificate generated with atool such as OpenSSL (http://openssl.org).

Subversion client SSL certificate management

ingto Apacheviaht t ps: //, aSubversion client can receive two different types of responses:
Swhile self-signed certificates are still vulnerable to a“ man-in-the-middle” attack, such an attack is much more difficult for a casual observer to pull off, compared
to sniffing unprotected passwords.

202

http://openssl.org

Server Configuration

* A server certificate

« A challengefor aclient certificate

Server certificate

When the client receives a server certificate, it needs to verify that the server iswho it claims to be. OpenSSL does this by examin-
ing the signer of the server certificate, or certificate authority (CA). If OpenSSL is unable to automatically trust the CA, or if some
other problem occurs (such as an expired certificate or hostname mismatch), the Subversion command-line client will ask you
whether you want to trust the server certificate anyway:

$ svn list https://host.exanpl e.conirepos/ project

Error validating server certificate for 'https://host.exanple.com 443’

- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate nanually!

Certificate information

- Hostnane: host. exanpl e. com

- Valid: fromJan 30 19:23:56 2004 GMI until Jan 30 19:23:56 2006 GMI

- Issuer: CA, exanple.com Sonetown, California, US

- Fingerprint: 7d:el:a9:34:33:39: ba: 6a: €9: ab5: c4: 22: 98: 7b: 76: 5¢: 92: a0: 9c: 7b

(R)ej ect, accept (t)emporarily or accept (p)ernmanently?

This dialogue is essentially the same question you may have seen coming from your web browser (which is just another HTTP cli-
ent like Subversion). If you choose the (p) ermanent option, Subversion will cache the server certificate in your private runtime
aut h/ area, just as your username and password are cached (see the section called “Caching credentials’), and will automatically
trust the certificate in the future.

Your runtimeser ver s file aso gives you the ability to make your Subversion client automatically trust specific CAs, either glob-
ally or on a per-host basis. Simply set the ssl - aut hority-fil es variable to a semicolon-separated list of PEM-encoded CA
certificates:

[gl obal]
ssl-authority-files = /path/to/ CAcertl. pem/path/to/ CAcert2. pem

Many OpenSSL installations also have a predefined set of “default” CAs that are nearly universally trusted. To make the Subver-
sion client automatically trust these standard authorities, set thessl -t r ust - def aul t - ca variabletot r ue.

Client certificate challenge

If the client receives a challenge for a certificate, the server is asking the client to prove its identity. The client must send back a
certificate signed by a CA that the server trusts, along with a challenge response which proves that the client owns the private key
associated with the certificate. The private key and certificate are usually stored in an encrypted format on disk, protected by a
passphrase. When Subversion receives this challenge, it will ask you for the path to the encrypted file and the passphrase that pro-
tectsit:

$ svn list https://host.exanpl e.conirepos/ project

Aut hentication realm https://host.exanple.com 443

203

Server Configuration

Client certificate filenane: /path/to/ny/cert.pl2
Passphrase for '/path/to/my/cert.pl2' : | **x**x*x

Notice that the client credentials are stored in a. p12 file. To use a client certificate with Subversion, it must be in PKCS#12
format, which is a portable standard. Most web browsers are able to import and export certificates in that format. Another option is
to use the OpenSSL command-line tools to convert existing certificates into PK CS#12.

The runtime servers file also alows you to automate this chalenge on a per-host basis. If you set the ssl-cli -
ent-cert-fileandssl-client-cert-password variables, Subversion can automatically respond to a client certificate
challenge without prompting you:

[gr oups]
exanpl ehost = host. exanpl e. com

[exanpl ehost]
ssl-client-cert-file = /path/to/ nmy/cert.pl2
ssl-client-cert-password = sonepassword

More security-conscious folk might want to exclude ssl - cl i ent - cert - passwor d to avoid storing the passphrase in the
clear on disk.

Extra Goodies

We've covered most of the authentication and authorization options for Apache and mod_dav_svn. But there are a few other nice
features that Apache provides.

Repository browsing

One of the most useful benefits of an Apache/WebDAV configuration for your Subversion repository is that your versioned files
and directories areimmediately available for viewing via a regular web browser. Since Subversion uses URL s to identify versioned
resources, those URL s used for HTTP-based repository access can be typed directly into a web browser. Y our browser will issue
an HTTP GET request for that URL; based on whether that URL represents a versioned directory or file, mod_dav_svn will re-
spond with adirectory listing or with file contents.

URL syntax

If the URLs do not contain any information about which version of the resource you wish to see, mod_dav_svn will answer with
the youngest version. This functionality has the wonderful side effect that you can pass around Subversion URLS to your peers as
references to documents, and those URLs will always point at the latest manifestation of that document. Of course, you can even
use the URL s as hyperlinks from other web sites, too.

As of Subversion 1.6, mod_dav_svn supports a public URI syntax for examining older revisions of both files and directories. The
syntax uses the query string portion of the URL to specify either or both of a peg revision and operative revision, which Subversion
will then use to determine which version of the file or directory to display to your web browser. Add the query string name/value
pair p=PEGREV, where PEGREV is a revision number, to specify the peg revision you wish to apply to the request. Use r =REV,
where REV isarevision number, to specify an operative revision.

For example, if you wish to see the latest version of a README. t xt file located in your project's / t r unk, point your web
browser to that file's repository URL, which might look something like the following:

204

Server Configuration

htt p:// host. exanpl e. com r epos/ proj ect/trunk/ README. t xt

If you now wish to see some older version of that file, add an operative revision to the URL's query string:

http://host. exanpl e. conl repos/ proj ect/trunk/ READVE. t xt ?r=1234

What if the thing you're trying to view no longer exists in the youngest revision of the repository? That's where a peg revision is
handy:

http://host. exanpl e. com repos/ proj ect/trunk/ del et ed-t hi ng. t xt ?p=321

And of course, you can combine peg revision and operative revision specifiersto fine-tune the exact item you wish to view:

htt p://host. exanpl e. com r epos/ proj ect/trunk/renaned-t hi ng. t xt ?2p=123&r =21

The previous URL would display revision 21 of the object which, in revision 123, was located at /
t runk/ renaned-t hi ng. t xt in the repository. See the section called “Peg and Operative Revisions’ for a detailed explana
tion of these “peg revision” and “operative revision” concepts. They can be a bit tricky to wrap your head around.

As areminder, this feature of mod_dav_svn offers only a limited repository browsing experience. Y ou can see directory listings
and file contents, but no revision properties (such as commit log messages) or file/directory properties. For folks who require more
extensive browsing of repositories and their history, there are several third-party software packages which offer this. Some ex-
amples include ViewV C (http://viewvc.tigris.org), Trac (http://trac.edgewall.org) and WebSVN (http://websvn.info). These third-
party tools don't affect mod_dav_svn's built-in “browseability”, and generally offer amuch wider set of features, including the dis-
play of the aforementioned property sets, display of content differences between file revisions, and so on.

Proper MIME type

When browsing a Subversion repository, the web browser gets a clue about how to render afile's contents by looking at the Con-
t ent - Type: header returned in Apache's response to the HTTP GET request. The value of this header is some sort of MIME
type. By default, Apache will tell the web browsers that all repository files are of the “default” MIME type, typically t ext/
pl ai n. This can be frustrating, however, if a user wishes repository files to render as something more meaningful—for example,
it might be niceto have af oo. ht m filein the repository actually render as HTML when browsing.

To make this happen, you need only to make sure that your files have the proper svn: m ne-t ype set. We discuss this in more
detail in the section caled “File Content Type’, and you can even configure your client to automatically attach proper
svn: mi me- t ype properties to files entering the repository for the first time; see the section called “ Automatic Property Setting”.

Continuing our example, if one were to set the svn: ni ne-t ype property tot ext/ ht ml on filef oo. ht m , Apache would
properly tell your web browser to render the file as HTML. One could also attach proper i mage/ * MIME-type properties to im-
age files and ultimately get an entire web site to be viewable directly from a repository! There's generally no problem with this, as
long as the web site doesn't contain any dynamically generated content.

Customizing the look

205

http://viewvc.tigris.org
http://trac.edgewall.org
http://websvn.info

Server Configuration

Y ou generally will get more use out of URLS to versioned files—after al, that's where the interesting content tends to lie. But you
might have occasion to browse a Subversion directory listing, where you'll quickly note that the generated HTML used to display
that listing is very basic, and certainly not intended to be aesthetically pleasing (or even interesting). To enable customization of
these directory displays, Subversion provides an XML index feature. A single SVNI ndexXSLT directive in your repository's
Locati on block of ht t pd. conf will instruct mod_dav_svn to generate XML output when displaying a directory listing, and
to reference the XSL T stylesheet of your choice:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/ svn
SVNI ndexXSLT "/ svni ndex. xsl "

</ I:E)cat i on>

Using the SVNI ndexXSLT directive and a creative XSLT stylesheet, you can make your directory listings match the color
schemes and imagery used in other parts of your web site. Or, if you'd prefer, you can use the sample stylesheets provided in the
Subversion source distribution'st ool s/ xsl t/ directory. Keep in mind that the path provided to the SVNI ndex XSLT directory
isactually a URL path—browsers need to be able to read your stylesheets to make use of them!

Listing repositories

If you're serving a collection of repositories from a single URL viathe SVNPar ent Pat h directive, then it's also possible to have
Apache display all available repositoriesto aweb browser. Just activate the SVNLi st Par ent Pat h directive:

<Location /svn>
DAV svn
SVNPar ent Pat h /var/ svn
SVNLi st Par ent Pat h on

</ I:bcat i on>

If a user now points her web browser to the URL htt p: // host . exanpl e. coml svn/, shell see alist of all Subversion re-
positories sitting in/ var / svn. Obviously, this can be a security problem, so this feature is turned off by default.

Apache logging

Because Apacheis an HTTP server at heart, it contains fantastically flexible logging features. It's beyond the scope of this book to
discuss al of the ways logging can be configured, but we should point out that even the most generic ht t pd. conf filewill cause
Apache to produce two logs: er r or _| og and access_| og. These logs may appear in different places, but are typically created
in the logging area of your Apache installation. (On Unix, they oftenlivein/ usr/ | ocal / apache2/ | ogs/.)

The er r or _| og describes any internal errors that Apache runsinto as it works. The access_| og file records every incoming
HTTP request received by Apache. This makesit easy to see, for example, which IP addresses Subversion clients are coming from,
how often particular clients use the server, which users are authenticating properly, and which requests succeed or fail.

Unfortunately, because HTTP is a statel ess protocol, even the simplest Subversion client operation generates multiple network re-
quests. It's very difficult to look at the access_| og and deduce what the client was doing—most operations look like a series of
cryptic PROPPATCH, GET, PUT, and REPORT requests. To make things worse, many client operations send nearly identical series
of requests, so it's even harder to tell them apart.

mod_dav_svn, however, can come to your aid. By activating an “operational logging” feature, you can ask mod_dav_svn to cre-
ate a separate log file describing what sort of high-level operations your clients are performing.

206

Server Configuration

To do this, you need to make use of Apache's Cust onlog directive (which is explained in more detail in Apache's own docu-
mentation). Be sure to invoke this directive outside your Subversion Locat i on block:

<Location /svn>
DAV svn

</ I:bcat i on>

Custonlog | ogs/svn_logfile "% % % SVN-ACTI ON}e" env=SVN- ACTI ON

In this example, we're asking Apache to create a special logfile, svn_I ogfi | e, in the standard Apache | ogs directory. The %
and %u variables are replaced by the time and username of the request, respectively. The really important parts are the two in-
stances of SVN- ACTI ON. When Apache sees that variable, it substitutes the value of the SVN- ACTI ON environment variable,
which is automatically set by mod_dav_svn whenever it detects a high-level client action.

So, instead of having to interpret atraditional access_| og like this:

[26/ Jan/ 2007: 22: 25: 29 -0600] "PROPFIND /svn/cal c/!svn/vcc/default HTTP/1.1" 207 398
[26/ Jan/ 2007: 22: 25: 29 -0600] "PROPFIND /svn/cal c/!svn/bln/59 HTTP/ 1. 1" 207 449

[26/ Jan/ 2007: 22: 25: 29 -0600] "PROPFIND /svn/calc HTTP/ 1. 1" 207 647

[26/ Jan/ 2007: 22: 25: 29 -0600] "REPORT /svn/cal c/!svn/vcc/default HTTP/1.1" 200 607

[26/ Jan/ 2007: 22: 25: 31 -0600] "OPTIONS /svn/calc HTTP/1.1" 200 188

[26/ Jan/ 2007: 22: 25: 31 - 0600] "MKACTIVITY

/svn/cal c/!svn/ act/ e6035ef 7- 5df 0- 4ac0- b811- 4be7c823f 998 HITP/ 1. 1" 201 227

you can peruse amuch more intelligiblesvn_| ogf i | e likethis:

[26/ Jan/ 2007: 22: 24: 20 -0600] - get-dir /tags r1729 props

[26/ Jan/ 2007: 22: 24: 27 -0600] - update /trunk r1729 depth=infinity

[26/ Jan/ 2007: 22: 25: 29 -0600] - status /trunk/foo r1729 depth=infinity
[26/ Jan/ 2007: 22: 25: 31 -0600] sally commit r1730

In addition to the SVN- ACTI ON environment variable, mod_dav_svn aso populates the SVN- REPCS and SVN- REPOS- NAMVE
variables, which carry the filesystem path to the repository and the basename thereof, respectively. Y ou might wish to include ref-
erences to one or both of these variablesin your Cust omLog format string, too, especially if you are combining usage information
from multiple repositoriesinto asingle log file.

For an exhaustive list of all actions logged, see the section called “High-level Logging”.
Write-through proxying

One of the nice advantages of using Apache as a Subversion server isthat it can be set up for simple replication. For example, sup-
pose that your team is distributed across four offices around the globe. The Subversion repository can exist only in one of those of-
fices, which means the other three offices will not enjoy accessing it—they're likely to experience significantly slower traffic and
response times when updating and committing code. A powerful solution is to set up a system consisting of one master Apache
server and several slave Apache servers. If you place a dave server in each office, users can check out a working copy from
whichever dave is closest to them. All read requests go to their local dave. Write requests get automatically routed to the single
master server. When the commit completes, the master then automatically “pushes’ the new revision to each slave server using the

207

Server Configuration

svnsync replication tool.

This configuration creates a huge perceptual speed increase for your users, because Subversion client traffic is typically 80-90%
read requests. And if those requests are coming from alocal server, it's ahuge win.

In this section, we'll walk you through a standard setup of this single-master/multiple-slave system. However, keep in mind that
your servers must be running at least Apache 2.2.0 (with mod_proxy loaded) and Subversion 1.5 (mod_dav_svn).

Configure the servers

First, configure your master server'sht t pd. conf filein the usual way. Make the repository available at a certain URI location,
and configure authentication and authorization however you'd like. After that's done, configure each of your “slave’ serversin the
exact same way, but add the special SVNMast er URI directive to the block:

<Location /svn>
DAV svn
SVNPat h /var/svn/repos
SVNMast er URI http:// nmaster. exanpl e. com svn

</ I:f)cat i on>

This new directive tells a dave server to redirect al write requests to the master. (This is done automatically via Apache's
mod_proxy module.) Ordinary read requests, however, are till serviced by the slaves. Be sure that your master and slave servers
al have matching authentication and authorization configurations; if they fall out of sync, it can lead to big headaches.

Next, we need to deal with the problem of infinite recursion. With the current configuration, imagine what will happen when a
Subversion client performs a commit to the master server. After the commit completes, the server uses svnsync to replicate the
new revision to each slave. But because svnsync appears to be just another Subversion client performing a commit, the slave will
immediately attempt to proxy the incoming write request back to the master! Hilarity ensues.

The solution to this problem is to have the master push revisions to a different <Locat i on> on the slaves. This location is con-
figured to not proxy write requests at all, but to accept normal commits from (and only from) the master's | P address:

<Locati on /svn-proxy-sync>
DAV svn
SVNPat h /var/svn/repos
Order deny, al | ow
Deny fromall
Only let the server's |IP address access this Location:
Al I ow from 10. 20. 30. 40

</ I:f)cat i on>

Set up replication

Now that you've configured your Locat i on blocks on master and slaves, you need to configure the master to replicate to the
slaves. Our walkthough uses svnsync, which is covered in more detail in the section called “ Replication with svnsync”.

First, make sure that each slave repository has a pr e- r evpr op- change hook script which alows remote revision property
changes. (This is standard procedure for being on the receiving end of svnsync.) Then log into the master server and configure
each of the slave repository URIsto receive data from the master repository on the local disk:

208

Server Configuration

$ svnsync init htt
fil

p sl avel. exanpl e. coni svn- proxy-sync \
e
Copi ed properties fo
p
e

/var/svn/repos

revision 0.

sl ave2. exanpl e. com svn- proxy-sync \
fil /var/ svn/repos

Copi ed properties for revision 0.

$ svnsync init http://slave3. exanpl e. conf svn-proxy-sync \
file:///lvar/svn/repos

Copi ed properties for revision 0.

2l
2l

$ svnsync init htt

~—~

/
/
r
/
/
r

Performthe initial replication

$ svnsync sync http://slavel. exanpl e. conf svn- proxy-sync \
file:///var/svn/repos

Transmitting file data ...

Committed revision 1.

Copi ed properties for revision 1.

Transmitting file data

Conmitted revision 2.

Copi ed properties for revision 2.

$ svnsync sync http://slave2. exanpl e. conf svn- proxy-sync \
file:///lvar/svn/repos

Transmitting file data ..

Committed revision 1.

Copi ed properties for revision 1.
Transmitting file data
Conmitted revision 2.

Copi ed properties for revision 2.

$ svnsync sync http://slave3. exanpl e. conf svn- proxy-sync \
file:///lvar/svn/repos

Transmitting file data ..

Committed revision 1.

Copi ed properties for revision 1.
Transmitting file data
Conmitted revision 2.

Copi ed properties for revision 2.

After thisis done, we configure the master server's post - conmi t hook script to invoke svnsync on each slave server:

#!/bin/sh

Post-conmit script to replicate newly conmitted revision to sl aves
svnsync sync h sl avel. exanpl e. coni svn- proxy-sync \
/var/svn/repos > /dev/null 2>81 &
svnsync sync sl ave2. exanpl e. coni svn- pr oxy-sync \
/var/svn/repos > /dev/null 2>81 &
sl ave3. exanpl e. com svn- proxy-sync \
/var/svn/repos > /dev/null 2>81 &

ttp:
ile:
ttp:
ile:
svnsync sync http:
ile:

/1
/1
/1
/1
11
11

—h 5 —h 5 —h

The extra bits on the end of each line aren't necessary, but they're a sneaky way to allow the sync commands to run in the back-
ground so that the Subversion client isn't left waiting forever for the commit to finish. In addition to this post - commi t hook,

209

Server Configuration

you'll need apost - r evpr op- change hook as well so that when a user, say, modifies alog message, the dave servers get that
change also:

#!/bin/sh

Post-revprop-change script to replicate revprop-changes to sl aves

REV=${ 2}

svnsync copy-revprops http://slavel. exanpl e. conif svn-proxy-sync \
file:///var/svn/repos \
-r ${REV} > /dev/null 2>&1 &

svnsync copy-revprops http://slave2. exanpl e. conf svn- proxy-sync \
file:///var/svn/repos \
-r ${REV} > /[dev/null 2>&1 &

svnsync copy-revprops http://slave3. exanpl e. conf svn- proxy-sync \
file://lvar/svn/repos \
-r ${REV} > /dev/null 2>&1 &

The only thing we've left out here is what to do about user-level locks (of the svn lock variety). Locks are enforced by the master
server during commit operations; but all the information about locks is distributed during read operations such as svn update and
svn status by the slave server. As such, afully functioning proxy setup needs to perfectly replicate lock information from the mas-
ter server to the dave servers. Unfortunately, most of the mechanisms that one might employ to accomplish this replication fall
short in one way or another®. Many teams don't use Subversion's locking features at all, so this may be a nonissue for you. Sadly,
for those teams which do use locks, we have no recommendations on how to gracefully work around this shortcoming.

Caveats

Y our master/slave replication system should now be ready to use. A couple of words of warning are in order, however. Remember
that this replication isn't entirely robust in the face of computer or network crashes. For example, if one of the automated svnsync
commands fails to complete for some reason, the slaves will begin to fall behind. For example, your remote users will see that
they've committed revision 100, but then when they run svn update, their local server will tell them that revision 100 doesn't yet
exist! Of course, the problem will be automatically fixed the next time another commit happens and the subsequent svnsync is suc-
cessful—the sync will replicate all waiting revisions. But still, you may want to set up some sort of out-of-band monitoring to no-
tice synchronization failures and force svnsync to run when things go wrong.

Another limitation of the write-through proxy deployment model involves version mismatches—of the version of Subversion
which isinstalled, that is—between the master and slave servers. Each new release of Subversion may (and often does) add new
features to the network protocol used between the clients and servers. Since feature negotiation happens against the slave, it is the
slave's protocol version and feature set which is used. But write operations are passed through to the master server quite literally.
Therefore, there is always arisk that the slave server will answer a feature negotiation request from the client in way that is true for
the slave, but untrue for the master if the master is running an older version of Subversion. This could result in the client trying to
use a new feature that the master doesn't understand, and failing. There are a couple of known problems of this sort in Subversion
1.7, which introduced a major revision of its HTTP protocol. If you are deploying a Subversion 1.7 slave server in front of a pre-
1.7 master, you'll want to configure your slave server's Subversion <Locat i on> block with the SVNAdverti seV2Pr ot ocol
O f directive.

@j For the best results possible, try to run the same version of Subversion on your master and slave servers.

Can We Set Up Replication with svnserve?

If you're using svnserve instead of Apache as your server, you can certainly configure your repository's hook scripts to in-
voke svnsync as we've shown here, thereby causing automatic replication from master to slaves. Unfortunately, at the time
of this writing there is no way to make slave svnserve servers automatically proxy write requests back to the master server.

9http://subversi on.tigris.org/issues/show_bug.cgi?71d=3457 tracks these problems.
210

http://subversion.tigris.org/issues/show_bug.cgi?id=3457

Server Configuration

This means your users would only be able to check out read-only working copies from the slave servers. Y ou'd have to con-
figure your slave servers to disallow write access completely. This might be useful for creating read-only “mirrors’ of popu-
lar open source projects, but it's not atransparent proxying system.

Other Apache features

Several of the features already provided by Apachein itsrole as arobust web server can be leveraged for increased functionality or
security in Subversion as well. The Subversion client is able to use SSL (the Secure Sockets Layer, discussed earlier). If your Sub-
version client is built to support SSL, it can access your Apache server using ht t ps: // and enjoy a high-quality encrypted net-
work session.

Equally useful are other features of the Apache and Subversion relationship, such as the ability to specify a custom port (instead of
the default HTTP port 80) or avirtual domain name by which the Subversion repository should be accessed, or the ability to access
the repository through an HTTP proxy.

Finally, because mod_dav_svn is speaking a subset of the WebDAV/DeltaVv protocoal, it's possible to access the repository via
third-party DAV clients. Most modern operating systems (Win32, OS X, and Linux) have the built-in ability to mount a DAV serv-
er as a standard network “shared folder.” This is a complicated topic, but also wondrous when implemented. For details, read Ap-
pendix C, WebDAV and Autoversioning.

Note that there are a number of other small tweaks one can make to mod_dav_svn that are too obscure to mention in this chapter.
For acomplete list of al ht t pd. conf directivesthat mod_dav_svn responds to, see the section called “Directives’ in Chapter 9,
Subversion Complete Reference.

Path-Based Authorization

Both Apache and svnserve are capable of granting (or denying) permissions to users. Typicaly thisis done over the entire reposit-
ory: auser can read the repository (or not), and she can write to the repository (or not). It's also possible, however, to define finer-
grained access rules. One set of users may have permission to write to a certain directory in the repository, but not others; another
directory might not even be readable by all but afew specia people. Asfiles are paths, too, it's even possible to restrict access on a
per file basis.

Both servers use a common file format to describe these path-based access rules. In the case of Apache, one needs to load the
mod_authz_svn module and then add the Aut hzSVNAccessFi | e directive (within the htt pd. conf file) pointing to your
own access rules file. (For a full explanation, see the section called “ Per-directory access control”.) If you're using svnserve, you
need to make the aut hz- db variable (within svnser ve. conf) point to your access rulesfile.

Do You Really Need Path-Based Access Control?

A lot of administrators setting up Subversion for the first time tend to jump into path-based access control without giving it a
lot of thought. The administrator usually knows which teams of people are working on which projects, so it's easy to jump in
and grant certain teams access to certain directories and not others. It seems like a natural thing, and it appeases the adminis-
trator's desire to maintain tight control of the repository.

Note, though, that there are often invisible (and visible!) costs associated with this feature. In the visible category, the server
needs to do a lot more work to ensure that the user has the right to read or write each specific path; in certain situations,
there's very noticeable performance loss. In the invisible category, consider the culture you're creating. Most of the time,
while certain users shouldn't be committing changes to certain parts of the repository, that socia contract doesn't need to be
technologically enforced. Teams can sometimes spontaneously collaborate with each other; someone may want to help
someone else out by committing to an area she doesn't normally work on. By preventing this sort of thing at the server level,
you're setting up barriers to unexpected collaboration. Y ou're also creating a bunch of rules that need to be maintained as
projects develop, new users are added, and so on. It's a bunch of extrawork to maintain.

Remember that this is a version control system! Even if somebody accidentally commits a change to something she
shouldn', it's easy to undo the change. And if a user commits to the wrong place with deliberate malice, it's a socia problem

211

Server Configuration

anyway, and that the problem needs to be dealt with outside Subversion.

So, before you begin restricting users' access rights, ask yourself whether there's a real, honest need for this, or whether it's
just something that * sounds good” to an administrator. Decide whether it's worth sacrificing some server speed, and remem-
ber that there's very little risk involved; it's bad to become dependent on technology as a crutch for social probl ems.1°

As an example to ponder, consider that the Subversion project itself has always had a notion of who is alowed to commit
where, but it's always been enforced socially. This is a good model of community trust, especially for open source projects.
Of course, sometimes there are truly legitimate needs for path-based access control; within corporations, for example, certain
types of datareally can be sensitive, and access needs to be genuinely restricted to small groups of people.

Once your server knows where to find your access file, it's time to define the rules.

The syntax of the file is the same familiar one used by svnser ve. conf and the runtime configuration files. Lines that start with
a hash (#) are ignored. In its simplest form, each section names a repository and path within it, as well as the authenticated user-
names are the option names within each section. The value of each option describes the user's level of access to the repository path:
either r (read-only) or r w(read/write). If the user is not mentioned at al, no accessis allowed.

To be more specific: the value of the section namesis either of theform [r epos- nane: pat h] or of theform [pat h] .

Prior to version 1.7, Subversion treated repository names and paths in a case-insensitive fashion for the purposes of
access control, converting them to lower case internally before comparing them against the contents of your access
file. It now does these comparisons case-sensitively. If you upgraded to Subversion 1.7 from an older version, you
should review your access files for case correctness.

If you're using the SVNPar ent Pat h directive, it'simportant to specify the repository namesin your sections. If you omit them, a
section such as [/ sone/ di r] will match the path / sone/ di r in every repository. If you're using the SVNPat h directive,
however, it'sfine to only define pathsin your sections—after al, there's only one repository.

[cal c:/branches/ cal ¢/ bug-142]
harry rw
sally r

In this first example, the user har r y has full read and write access on the/ br anches/ cal ¢/ bug- 142 directory inthecal c
repository, but the user sal | y has read-only access. Any other users are blocked from accessing this directory.

mod_dav_svn offers a directive, SYNReposNarme, which allows administrators to define a more human-friendly
name, of sorts, for arepository:

<Location /svn/cal c>
SVNPat h /var/svn/cal c
SVNReposName "Cal cul ator Application”

This allows mod_dav_svn to identify the repository by something other than merely its server directory

10A common theme in this book!

212

Server Configuration

cal c, in the previous example—when providing directory listings of repository content. Be aware, however, that
when consulting the access file for authorization rules, Subversion uses this repository basename for comparison, not
any configured human-friendly name.

Of course, permissions are inherited from parent to child directory. That means we can specify a subdirectory with a different ac-
cess policy for Saly:

[cal c:/branches/ cal ¢/ bug-142]
harry rw
sally r

give sally wite access only to the '"testing' subdir
[cal c:/branches/ cal c/ bug-142/testing]
sally = rw

Now Sally can writetothet est i ng subdirectory of the branch, but can still only read other parts. Harry, meanwhile, continues to
have complete read/write access to the whole branch.

It's also possible to explicitly deny permission to someone viainheritance rules, by setting the username variable to nothing:

[cal c:/branches/ cal c/ bug-142]
harry = rw
sally =r

[cal c:/branches/ cal ¢/ bug- 142/ secret]
harry =

In this example, Harry has read/write access to the entire bug- 142 tree, but has absolutely no access at @l to thesecr et subdir-
ectory within it.

The thing to remember is that the most specific path aways matches first. The server tries to match the path itself,
_} and then the parent of the path, then the parent of that, and so on. The net effect is that mentioning a specific path in
the access file will always override any permissions inherited from parent directories.

By default, nobody has any access to the repository at al. That means that if you're starting with an empty file, you'll probably
want to give at least read permission to all users at the root of the repository. You can do this by using the asterisk variable (*),
which means “all users’:

This is a common setup; notice that no repository name is mentioned in the section name. This makes all repositories world-
readable to all users. Once all users have read access to the repositories, you can give explicit r w permission to certain users on
specific subdirectories within specific repositories.

The access file al so allows you to define whole groups of users, much like the Unix / et ¢/ gr oup file:

213

Server Configuration

[groups]

cal c-devel opers = harry, sally, joe

pai nt - devel opers = frank, sally, jane
everyone = harry, sally, joe, frank, jane

Groups can be granted access control just like users. Distinguish them with an “at” (@ prefix:

[cal c:/projects/calc]
@al c-devel opers = rw

[paint:/projects/paint]

jane =r
@ai nt - devel opers = rw

Another important fact is that group permissions are not overridden by individual user permissions. Rather, the combination of all
matching permissions is granted. In the prior example, Jane is a member of the pai nt - devel oper s group, which has read/
write access. Combined with thej ane = r rule, this still gives Jane read/write access. Permissions for group members can only
be extended beyond the permissions the group aready has. Restricting users who are part of a group to less than their group's per-
missionsisimpossible.

Groups can also be defined to contain other groups:

[gr oups]

cal c-devel opers = harry, sally, joe

pai nt - devel opers = frank, sally, jane

everyone = @al c-devel opers, @ai nt-devel opers

Subversion 1.5 brought several useful features to the access file syntax—username aliases, authentication class tokens, and a new
rule exclusion mechanism—all of which further simplify the maintenance of the access file. We'll describe first the username ali-
ases feature.

Some authentication systems expect and carry relatively short usernames of the sorts we've been describing here—harry,
sal |y, j oe, and so on. But other authentication systems—such as those which use LDAP stores or SSL client certificates—may
carry much more complex usernames. For example, Harry's username in an LDAP-protected system might be CN=Har ol d
Hacker, OQU=Engi neer s, DC=r ed- bean, DC=com With usernames like that, the access file can become quite bloated with
long or obscure usernames that are easy to mistype. Fortunately, username aliases alow you to have to type the correct complex
username only once, in a statement which assignsto it amore easily digestable alias.

[al i ases]

harry = CN=Har ol d Hacker, OU=Engi neer s, DC=r ed- bean, DC=com
sally = CN=Sal |y Swatterbug, OQU=Engi neer s, DC=r ed- bean, DC=com
joe = CN=Cerald |I. Joseph, O=Engi neers, DC=r ed- bean, DC=com

Once you've defined a set of aliases, you can refer to the users elsewhere in the access file via their aliases in all the same places
you could have instead used their actual usernames. Simply prepend an ampersand to the alias to distinguish it from a regular user-

214

Server Configuration

name:

[groups]

cal c-devel opers = &harry, &sally, & oe

pai nt - devel opers = & rank, &sally, & ane
everyone = @al c-devel opers, @al nt-devel opers

You might also choose to use aliases if your users usernames change frequently. Doing so allows you to need to update only the
aliases table when these username changes occur, instead of doing global-search-and-replace operations on the whole access file.

Subversion also supports some “magic” tokens for helping you to make rule assignments based on the user's authentication class.
One such token is the $aut hent i cat ed token. Use this token where you would otherwise specify a username, aias, or group
name in your authorization rules to declare the permissions granted to any user who has authenticated with any username at all.
Similarly employed isthe $anonynous token, except that it matches everyone who has not authenticated with a username.

[cal endar:/ proj ects/cal endar]
$anonynous = r
$authenticated = rw

Finally, another handy bit of access file syntax magic is the use of the tilde (~) character as an exclusion marker. In your authoriza-
tion rules, prefixing a username, alias, group name, or authentication class token with atilde character will cause Subversion to ap-
ply the rule to users who do not match the rule. Though somewhat unnecessarily obfuscated, the following block is equivalent to
the one in the previous example:

[cal endar:/ proj ects/cal endar]
~$aut henticated = r
~$anonynous = rw

A less obvious example might be as follows:

[groups]

cal c-devel opers = &harry, &sally, & oe
cal c-owners = &hew ett, &packard

cal c = @al c-devel opers, @al c-owners

Any calc participant has read-wite access...
[cal c:/projects/calc]
@alc = rw

...but only allow the owners to nake and nodify rel ease tags.
[cal c:/projects/cal c/tags]
~@al c-owners = r

All of the above examples use directories, because defining access rules on them is the most common case. But is similarly able to
restrict access on file paths, too.

215

Server Configuration

[cal endar:/ proj ects/cal endar/ manager. i cs]
harry = rw
sally =r

Partial Readability and Checkouts

If you're using Apache as your Subversion server and have made certain subdirectories of your repository unreadable to cer-
tain users, you need to be aware of a possible nonoptimal behavior with svn checkout.

When the client requests a checkout or update over HTTP, it makes a single server request and receives a single (often large)
server response. When the server receives the request, that is the only opportunity Apache has to demand user authentication.
This has some odd side effects. For example, if a certain subdirectory of the repository is readable only by user Saly, and
user Harry checks out a parent directory, his client will respond to the initial authentication challenge as Harry. As the server
generates the large response, there's no way it can resend an authentication challenge when it reaches the special subdirect-
ory; thus the subdirectory is skipped altogether, rather than asking the user to reauthenticate as Sally at the right moment. In
asimilar way, if the root of the repository is anonymously world-readable, the entire checkout will be done without authen-
tication—again, skipping the unreadable directory, rather than asking for authentication partway through.

High-level Logging

Both the Apache httpd and svnserve Subversion servers provide support for high-level logging of Subversion operations. Config-
uring each of the server options to provide this level of logging is done differently, of course, but the output from each is designed
to conform to a uniform syntax.

To enable high-level logging in svnserve, you need only use the - - | og- fi | e command-line option when starting the server,
passing as the value to the option the file to which svnserve should write its log output.

$ svnserve -d -r /path/to/repositories --log-file /var/log/svn.log

Enabling the same in Apache is a bit more involved, but is essentially an extension of Apache's stock log output configuration
mechani sms—see the section called “ Apache logging” for details.

The following is alist of Subversion action log messages produced by its high-level logging mechanism, followed by one or more
examples of the log message as it appears in the log outpuit.
Checkout or export
checkout - or-export /path r62 depth=infinity
Commit

comit harry r100

Diffs

216

Server Configuration

r15: 20 depth=infinity ignore-ancestry
1@5 /path2@0 depth=infinity ignore-ancestry

g

Fetch a directory

get-dir /trunk ri17 text

Fetch afile

get-file /path r20 props

Fetch afilerevision

get-file-revs /path r12:15 incl ude-nerged-revisions

Fetch merge information

get-mergei nfo (/pathl /path2)

Lock

| ock /path steal

Log

log (/pathl,/path2,/path3) r20:90 di scover-changed-paths revprops=()

Replay revisions (svnsync)

replay /path r19

Revision property change

change-rev-prop r50 propertynane

Revision property list

rev-proplist r34

Status

217

Server Configuration

status /path r62 depth=infinity
Switch

switch /pathA /pathB@0 depth=infinity
Unlock

unl ock /path break
Update

update /path r17 send-copyfrom args

As a convenience to administrators who wish to post-process their Subversion high-level logging output (perhaps for reporting or
analysis purposes), Subversion source code distributions provide a Python module (located at tool s/serv-
er-si de/ svn_server _| og_par se. py) which can be used to parse Subversion's log outpuit.

Server Optimization

Part of the due diligence when offering a service such as a Subversion server involves capacity planning and performance tuning.
Subversion doesn't tend to be particularly greedy in terms of server resources such as CPU cycles and memory, but any service can
benefit from optimizations, especially when usage of the service skyrocketsll. In this section, we'll discuss some ways you can
tweak your Subversion server configuration to offer even better performance and scalability.

Data Caching

Generally speaking, the most expensive part of a Subversion server's jab is fetching data from the repository. Subversion 1.6 at-
tempted to offset this cost by introducing some in-memory caching of certain classes of data read from the repository. But Subver-
sion 1.7 takes this a step further, not only caching the results of some of the more costly operations, but also by providing in each
of the available servers the means by which fine-tune the size and some behaviors of the cache.

For svnserve, you can specify the size of the cache using the - - menor y- cache- si ze (- M command-line option. Y ou can aso
dictate whether svnserve should attempt to cache content fulltexts and deltas via the boolean - - cache-ful | texts and -
- cache-t xdel t as options, respectively.

$ svnserve -d -r /path/to/repositories \
--menory-cache-si ze 1024 \
--cache-txdeltas yes \
--cache-fulltexts yes

mod_dav_svn provides the same degree of cache configurability viaht t pd. conf directives. The SYNI nMenor yCacheSi ze,
SVNCacheFul | Text s, and SVNCacheText Del t as directives may be used at the server configuration level to control Sub-

1 subversion's case, the skyrocketing affect is, of course, due to its cool name. Well, that and its popularity, reliability, ease of use....

218

Server Configuration

version's data cache characteristics:

<| f Modul e dav_svn_nodul e>
Enable a 1 Gb Subversion data cache for both fulltext and deltas.
SVNI nMenor yCacheSi ze 1048576
SVNCacheText Del tas On
SVNCacheFul | Texts On
</ | f Modul e>

So what settings should you use? Certainly you need to consider what resources are available on your server. To get any benefit out
of the cache at al, you'll probably want to let the cache be at least large enough to hold all the files which are most commonly ac-
cessed in your repository (for example, your project'st r unk directory tree).

Setting the memory cache size to 0 will disable this enhanced caching mechanism and cause Subversion to fall back
_/J to using the older cache mechanisms introduced in Subversion 1.6.

<> Currently, only repositories which make use of the FSFS backend data store make use of this data caching functional-
ity.

Network Compression of Data

Compressing the data transmitted across the wire can greatly reduce the size of those network transmissions, but comes at the cost
of server (and client) CPU cycles. Depending on your server's CPU capacity, the typical access patterns of the clients who use your
servers, and the bandwidth of the networks between them, you might wish to fine tune just how hard your server will work to com-
press the data it sends across the wire. To assist with this fine tuning process, Subversion 1.7 offers the - - conpr essi on (- ¢)
option to svnserve and the SYNConpr essi onLevel directive for mod_dav_svn. Both accept a value which is an integer
between 0 and 9 (inclusive), where 9 offers the best compression of wire data, and 0 disables compression altogether.

For example, on alocal area network (LAN) with 1-Gigabit connections, it might not make sense to have the server compress its
network transmissions (which also forces the clients to decompress them), as the network itself is so fast that users won't really be-

nefit from the smaller overall network payload. On the other hand, servers which are accessed primarily by clients with low-
bandwidth connections would be doing those clients a favor by minimizing the overall size of its network communications.

Supporting Multiple Repository Access Methods

Y ou've seen how a repository can be accessed in many different ways. But is it possible—or safe—for your repository to be ac-
cessed by multiple methods simultaneously? The answer is yes, provided you use a bit of foresight.

At any given time, these processes may require read and write access to your repository:

» Regular system users using a Subversion client (as themselves) to access the repository directly viafi |l e: // URLs

* Regular system users connecting to SSH-spawned private svnser ve processes (running as themselves), which access the reposit-
ory

» An svnserve process—either adaemon or one launched by inetd—running as a particular fixed user

An Apache httpd process, running as a particular fixed user

219

Server Configuration

The most common problem administrators run into is repository ownership and permissions. Does every process (or user) in the
preceding list have the rights to read and write the repository’s underlying data files? Assuming you have a Unix-like operating sys-
tem, a straightforward approach might be to place every potential repository user into a new svn group, and make the repository
wholly owned by that group. But even that's not enough, because a process may write to the database files using an unfriendly
umask—one that prevents access by other users.

So the next step beyond setting up a common group for repository usersisto force every repository-accessing process to use a sane
umask. For users accessing the repository directly, you can make the svn program into a wrapper script that first runsumask 002
and then runs the real svn client program. You can write a similar wrapper script for the svnserve program, and add a urmask
002 command to Apache's own startup script, apachect | . For example:

$ cat /usr/bin/svn
#!/ bi n/ sh

umask 002
fusr/bin/svn-real "$@

Another common problem is often encountered on Unix-like systems. If your repository is backed by Berkeley DB, for example, it
occasionally creates new log files to journal its actions. Even if the Berkeley DB repository is wholly owned by the svn group,
these newly created log files won't necessarily be owned by that same group, which then creates more permissions problems for
your users. A good workaround is to set the group SUID bit on the repository's db directory. This causes all newly created log files
to have the same group owner as the parent directory.

Once you've jumped through these hoops, your repository should be accessible by all the necessary processes. It may seem a bit
messy and complicated, but the problems of having multiple users sharing write access to common files are classic ones that are
not often elegantly solved.

Fortunately, most repository administrators will never need to have such a complex configuration. Users who wish to access repos-
itories that live on the same machine are not limited tousing fi | e: / / access URLs—they can typically contact the Apache HT-
TP server or svnserve using | ocal host for the server name in their htt p: // or svn: // URL. And maintaining multiple
server processes for your Subversion repositories is likely to be more of a headache than necessary. We recommend that you
choose asingle server that best meets your needs and stick with it!

The svn+ssh:// Server Checklist

It can be quite tricky to get a bunch of users with existing SSH accounts to share a repository without permissions problems.
If you're confused about all the things that you (as an administrator) need to do on a Unix-like system, here's a quick check-
list that resummarizes some of the topics discussed in this section:

 All of your SSH users need to be able to read and write to the repository, so put al the SSH users into a single group.

» Make the repository wholly owned by that group.

 Set the group permissions to read/write.

» Your users need to use a sane umask when accessing the repository, so make sure svnserve (/ usr/ bi n/ svnser ve, or
wherever it livesin $PATH) is actually awrapper script that runsunask 002 and executes the real svnserve binary.

e Take similar measures when using svnlook and svnadmin. Either run them with a sane umask or wrap them as just de-
scribed.

220

Chapter 7. Customizing Your Subversion
Experience

Version control can be a complex subject, as much art as science, that offers myriad ways of getting stuff done. Throughout this
book, you've read of the various Subversion command-line client subcommands and the options that modify their behavior. In this
chapter, we'll [ook into still more ways to customize the way Subversion works for you—setting up the Subversion runtime config-
uration, using external helper applications, Subversion's interaction with the operating system'’s configured locale, and so on.

Runtime Configuration Area

Subversion provides many optional behaviors that the user can control. Many of these options are of the kind that a user would
wish to apply to all Subversion operations. So, rather than forcing users to remember command-line arguments for specifying these
options and to use them for every operation they perform, Subversion uses configuration files, segregated into a Subversion config-
uration area.

The Subversion configuration area is a two-tiered hierarchy of option hames and their values. Usually, this boils down to a special
directory that contains configuration files (the first tier), which are just text files in standard INI format where “sections’ provide
the second tier. You can easily edit these files using your favorite text editor (such as Emacs or vi), and they contain directives read
by the client to determine which of several optional behaviors the user prefers.

Configuration Area Layout

The first time the svn command-line client is executed, it creates a per-user configuration area. On Unix-like systems, this area ap-
pears as a directory named . subver si on in the user's home directory. On Win32 systems, Subversion creates a folder named
Subver si on, typicaly insidethe Appl i cati on Dat a areaof the user's profile directory (which, by the way, is usualy a hid-
den directory). However, on this platform, the exact location differs from system to system and is dictated by the Windows Re-
gistry.: We will refer to the per-user configuration area using its Unix name, . subver si on.

In addition to the per-user configuration area, Subversion also recognizes the existence of a system-wide configuration area. This
gives system administrators the ability to establish defaults for all users on a given machine. Note that the system-wide configura-
tion area alone does not dictate mandatory policy—the settings in the per-user configuration area override those in the system-wide
one, and command-line arguments supplied to the svn program have the final word on behavior. On Unix-like platforms, the sys-
tem-wide configuration area is expected to bethe/ et ¢/ subver si on directory; on Windows machines, it looks for a Subver -
si on directory inside the common Appl i cati on Dat a location (again, as specified by the Windows Registry). Unlike the
per-user case, the svn program does not attempt to create the system-wide configuration area.

The per-user configuration area currently contains three files—two configuration files (confi g and servers), and a
README. t xt file, which describes the INI format. At the time of their creation, the files contain default values for each of the
supported Subversion options, mostly commented out and grouped with textual descriptions about how the values for the key affect
Subversion's behavior. To change a certain behavior, you need only to load the appropriate configuration file into a text editor, and
to modify the desired option's value. If at any time you wish to have the default configuration settings restored, you can simply re-
move (or rename) your configuration directory and then run some innocuous svn command, such assvn --versi on. A new
configuration directory with the default contents will be created.

Subversion also alows you to override individual configuration option values at the command line viathe - - conf i g- opti on
option, which is especially useful if you need to make a (very) temporary change in behavior. For more about this option's proper
usage, see the section called “ svn Options’.

The per-user configuration area also contains a cache of authentication data. The aut h directory holds a set of subdirectories that
contain pieces of cached information used by Subversion's various supported authentication methods. This directory is created in
such away that only the user herself has permission to read its contents.

1The APPDATA environment variable pointstothe Appl i cati on Dat a area, so you can aways refer to thisfolder as %APPDATA% Subver si on.
221

Customizing Y our Subversion Experience

Configuration and the Windows Registry

In addition to the usual INI-based configuration area, Subversion clients running on Windows platforms may also use the Windows
Registry to hold the configuration data. The option names and their values are the same as in the INI files. The “file/section” hier-
archy is preserved as well, though addressed in a dlightly different fashion—in this schema, files and sections are just levelsin the
Registry key tree.

Subversion looks for system-wide configuration values under the
HKEY LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on key. For example, the gl obal -i gnores option,
which is in the m scel | any section of the config file, would be found at
HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ M scel | any\ gl obal -i gnores. Per-
user configuration values should be stored under HKEY CURRENT _USER\ Sof t war e\ Ti gri s. or g\ Subver si on.

Registry-based configuration options are parsed before their file-based counterparts, so they are overridden by values found in the
configuration files. In other words, Subversion looks for configuration information in the following locations on a Windows sys-
tem; lower-numbered | ocations take precedence over higher-numbered |ocations:

1. Command-line options

2. The per-user INI files

3. The per-user Registry values
4. The system-wide INI files

5. The system-wide Registry values

Also, the Windows Registry doesn't really support the notion of something being “commented out.” However, Subversion will ig-
nore any option key whose name begins with a hash (#) character. This allows you to effectively comment out a Subversion option
without deleting the entire key from the Registry, obviously simplifying the process of restoring that option.

The svn command-line client never attempts to write to the Windows Registry and will not attempt to create a default configura-
tion areathere. Y ou can create the keys you need using the REGEDI T program. Alternatively, you can createa. r eg file (such as
the one in Example 7.1, “Sample registration entries (.reg) file”), and then double-click on that file's icon in the Explorer shell,
which will cause the datato be merged into your Registry.

Example 7.1. Sampleregistration entries (.reg) file

REGEDI T4
[HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Ser ver s\ gr oups]

[HKEY_LOCAL_MACHI NE\ Sof t war e\ Ti gri s. or g\ Subver si on\ Server s\ gl obal]
"#htt p-aut h-types" ="basi c; di gest ; negoti ate"

"#htt p- conpressi on"="yes"

"#http-library"=""

"#htt p- proxy-exceptions"=""

"#htt p- proxy-host"=""

"#ht t p- proxy- password"=""

"#htt p- proxy-port"=""

"#htt p- proxy-usernanme"=""

"#htt p-timeout"="0"
"#neon- debug- mask" =""
"#ssl-authority-files"=""
"#ssl-client-cert-file"=""
"#ssl-client-cert-password"=""

222

Customizing Y our Subversion Experience

"#ssl - pkcs11- provi der”
"#ssl-trust-default-ca"=""
"#store-auth-creds"="yes"

"#st or e- passwor ds" ="yes"

"#st or e- pl ai nt ext - passwor ds" ="ask"
"#store-ssl-client-cert-pp"="yes"
"#store-ssl-client-cert-pp-plaintext"="ask"
"#user nane" =""

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ aut h]
" #passwor d- st ores" ="w ndows- cr ypt oapi "

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ hel per s]
n #di f f - C[Td" :II n

"#di ff-extensions"="-u
"#di ff3-cmd"=""

"#di ff 3- has- programarg"=""
"#edi t or-cnd" =" not epad"
"#mer ge-tool -cmd"=""

[HKEY _CURRENT USER\ Sof twar e\ Ti gri s. or g\ Subver si on\ Confi g\ t unnel s]

[HKEY_CURRENT_USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ nmi scel | any]
"#enabl e- aut o- props" ="no"

"#gl obal -ignores"="*.0 *.1lo *.la *.al .libs *.s0o *.s0.[0-9]* *.a *.pyc *.pyo *.rej *~
#*# . #* .*.swp .DS_Store"

"#interactive-conflicts"="yes"

"#l og- encodi ng"=""

"#m ne-types-file"=""

"#no- unl ock" ="no"

"#preserved-conflict-file-exts"="doc ppt xls od?"

"#use-conmit-times"="no"

[HKEY_CURRENT _USER\ Sof t war e\ Ti gri s. or g\ Subver si on\ Confi g\ aut o- pr ops]

Example 7.1, “Sample registration entries (.reg) file" shows the contents of a . r eg file, which contains some of the most com-
monly used configuration options and their default values. Note the presence of both system-wide (for network proxy-related op-
tions) and per-user settings (editor programs and password storage, among others). Also note that all the options are effectively
commented out. You need only to remove the hash (#) character from the beginning of the option names and set the values as you
desire.

Configuration Options

In this section, we will discuss the specific runtime configuration options that Subversion currently supports.

Servers

The ser ver s file contains Subversion configuration options related to the network layers. There are two special sections in this
file—[gr oups] and [gl obal] . The [gr oups] section is essentially a cross-reference table. The keys in this section are the
names of other sections in the file; their values are globs—textual tokens that possibly contain wildcard characters—that are com-
pared against the hostnames of the machine to which Subversion requests are sent.

[groups]
beani e- babi es = *.red-bean. com
col | abnet = svn. col | ab. net

[beani e- babi es]

223

Customizing Y our Subversion Experience

[col | abnet]

When Subversion is used over a network, it attempts to match the name of the server it is trying to reach with a group name under
the[groups] section. If a match is made, Subversion then looks for a section in the ser ver s file whose name is the matched
group's name. From that section, it reads the actual network configuration settings.

The [gl obal] section contains the settings that are meant for al of the servers not matched by one of the globs under the
[gr oups] section. The options available in this section are exactly the same as those that are valid for the other server sectionsin
the file (except, of course, the specia [gr oups] section), and are as follows:

htt p- aut h-types
Thisis asemicolon-delimited list of HTTP authentication types which the client will deem acceptable. Valid types are basi c,
di gest, and negot i at e, with the default behavior being acceptance of any these authentication types. A client which in-
sists on not transmitting authentication credentials in cleartext might, for example, be configured such that the value of this op-
tionisdi gest ; negot i at e—omitting basi ¢ from the list. (Note that this setting is only honored by Subversion's Neon-
based HTTP provider module.)

ht t p- conpr essi on
This specifies whether Subversion should attempt to compress network requests made to DAV-ready servers. The default
valueisyes (though compression will occur only if that capability is compiled into the network layer). Set thisto no to dis-
able compression, such as when debugging network transmissions.

http-library
Subversion provides a pair of repository access modules that understand its WebDAV network protocol. The original one,
which shipped with Subversion 1.0, is| i bsvn_r a_neon (though back then it was called | i bsvn_r a_dav). Newer Sub-
version versions also provide | i bsvn_ra_serf, which uses a different underlying implementation and aims to support
some of the newer HTTP concepts.

At thispoint, | i bsvn_ra_serf isstill considered experimental, though it appears to work in the common cases quite well.
To encourage experimentation, Subversion providesthe ht t p- | i br ary runtime configuration option to allow users to spe-
cify (generally, or in a per-server-group fashion) which WebDAV access module they'd prefer to use—neon or ser f .

ht t p- pr oxy-excepti ons
This specifies a comma-separated list of patterns for repository hostnames that should be accessed directly, without using the
proxy machine. The pattern syntax is the same as is used in the Unix shell for filenames. A repository hosthame matching any
of these patterns will not be proxied.

ht t p- pr oxy- host
This specifies the hostname of the proxy computer through which your HTTP-based Subversion requests must pass. It defaults
to an empty value, which means that Subversion will not attempt to route HTTP requests through a proxy computer, and will
instead attempt to contact the destination machine directly.

ht t p- pr oxy- password
This specifies the password to supply to the proxy machine. It defaults to an empty value.

ht t p- pr oxy- port
This specifies the port number on the proxy host to use. It defaults to an empty value.

ht t p- pr oxy- user name
This specifies the username to supply to the proxy machine. It defaults to an empty value.

http-ti neout

224

Customizing Y our Subversion Experience

This specifies the amount of time, in seconds, to wait for a server response. If you experience problems with a slow network
connection causing Subversion operations to time out, you should increase the value of this option. The default value is 0,
which instructs the underlying HTTP library, Neon, to use its default timeout setting.

neon- debug- nask
Thisisan integer mask that the underlying HTTP library, Neon, uses for choosing what type of debugging output to yield. The
default value is 0, which will silence all debugging output. For more information about how Subversion makes use of Neon,
see Chapter 8, Embedding Subversion.

ssl-authority-files
Thisis a semicolon-delimited list of paths to files containing certificates of the certificate authorities (or CAs) that are accep-
ted by the Subversion client when accessing the repository over HTTPS.

ssl-client-cert-file
If ahost (or set of hosts) requires an SSL client certificate, you'll normally be prompted for a path to your certificate. By set-
ting this variable to that same path, Subversion will be able to find your client certificate automatically without prompting you.
There's no standard place to store your certificate on disk; Subversion will grab it from any path you specify.

ssl-client-cert-password
If your SSL client certificate file is encrypted by a passphrase, Subversion will prompt you for the passphrase whenever the
certificate is used. If you find this annoying (and don't mind storing the password in the ser ver s file), you can set this vari-
able to the certificate's passphrase. Y ou won't be prompted anymore.

ssl - pkcs11- provi der
The value of this option is the name of the PKCS#11 provider from which an SSL client certificate will be drawn (if the server
asks for one). This setting is only honored by Subversion's Neon-based HTTP provider module.

ssl-trust-default-ca
Set thisvariableto yes if you want Subversion to automatically trust the set of default CAs that ship with OpenSSL.

st ore-aut h-creds
This setting is the same as st or e- passwor ds, except that it enables or disables on-disk caching of all authentication in-
formation: usernames, passwords, server certificates, and any other types of cacheable credentials.

st or e- passwor ds
This instructs Subversion to cache, or not to cache, passwords that are supplied by the user in response to server authentication
challenges. The default valueisyes. Set thisto no to disable this on-disk password caching. Y ou can override this option for
a single instance of the svn command using the - - no- aut h- cache command-line parameter (for those subcommands that
support it). For more information regarding that, see the section called “ Caching credentials’. Note that regardliess of how this
option is configured, Subversion will not store passwords in plaintext unless the st or e- pl ai nt ext - passwor ds option
isalsosettoyes.

st or e- pl ai nt ext - passwor ds
This variable is only important on UNIX-like systems. It controls what the Subversion client does in case the password for the
current authentication realm can only be cached on disk in unencrypted form, inthe ~/ . subver si on/ aut h/ caching area.
You can set it to yes or no to enable or disable caching of passwords in unencrypted form, respectively. The default setting is
ask, which causes the Subversion client to ask you each time a new password is about to be added to the
~/ . subver si on/ aut h/ caching area.

store-ssl-client-cert-pp
This option controls whether Subversion will cache SSL client certificate passphrases provided by the user. Its value defaults
toyes. Set thisto no to disable this passphrase caching.

store-ssl-client-cert-pp-plaintext
This option controls whether Subversion, when attempting to cache an SSL client certificate passphrase, will be allowed to do
S0 using its on-disk plaintext storage mechanism. The default value of this option is ask, which causes the Subversion client
to ask you each time a new client certificate passphrase is about to be added to the ~/ . subver si on/ aut h/ caching area.
Set this option's valueto yes or no to indicate your preference and avoid related prompts.

225

Customizing Y our Subversion Experience

Config

The confi g file contains the rest of the currently available Subversion runtime options—those not related to networking. There
areonly afew optionsin use as of thiswriting, but they are again grouped into sections in expectation of future additions.

The [aut h] section contains settings related to Subversion's authentication and authorization against the repository. It contains
the following:

passwor d- st ores
This comma-delimited list specifies which (if any) system-provided password stores Subversion should attempt to use when
saving and retrieving cached authentication credentials, and in what order Subversion should prefer them. The default value is
gnone- keyring, kwallet, keychain, w ndows-crypto-api, representing the GNOME Keyring, KDE Wal-
let, Mac OS X Keychain, and Microsoft Windows cryptography API, respectively. Listed stores which are not available on the
system are ignored.

st or e- passwor ds
This option has been deprecated from the conf i g file. It now lives as a per-server configuration item in the ser ver s con-
figuration area. See the section called “ Servers’ for details.

st ore-aut h-creds
This option has been deprecated from the conf i g file. It now lives as a per-server configuration item in the ser ver s con-
figuration area. See the section called “ Servers’ for details.

The [hel per s] section controls which external applications Subversion uses to accomplish its tasks. Valid options in this sec-
tion are:

diff-cnmd
This specifies the absolute path of a differencing program, used when Subversion generates “diff” output (such as when using
the svn diff command). By default, Subversion uses an internal differencing library—setting this option will cause it to per-
form this task using an external program. See the section called “Using External Differencing and Merge Tools” for more de-
tails on using such programs.

di f f - ext ensi ons
Like the - - ext ensi ons (- x) command-line option, this specifies additional options passed to the file content differencing
engine. The set of meaningful extension options differs depending on whether the client is using Subversion's internal differen-
cing engine or an external mechanism. See the output of svn hel p di ff for details. The default value for this optionis- u.

diff3-cnmd
This specifies the absolute path of a three-way differencing program. Subversion uses this program to merge changes made by
the user with those received from the repository. By default, Subversion uses an internal differencing library—setting this op-
tion will cause it to perform this task using an external program. See the section called “Using External Differencing and
Merge Tools’ for more details on using such programs.

di f f 3- has-programarg
Thisflag should be set to t r ue if the program specified by the di f f 3- crd option acceptsa- - di f f - pr ogr amcommand-
line parameter.

editor-cnd
This specifies the program Subversion will use to query the user for certain types of textua metadata or when interactively
resolving conflicts. See the section called “Using External Editors’ for more details on using external text editors with Subver-
sion.

nmer ge-t ool -cnd
This specifies the program that Subversion will use to perform three-way merge operations on your versioned files. See the
section called “Using External Differencing and Merge Tools’ for more details on using such programs.

226

Customizing Y our Subversion Experience

The [t unnel s] section alows you to define new tunnel schemes for use with svnserve and svn: // client connections. For
more details, see the section called “Tunneling over SSH”.

Them scel | any section iswhere everything that doesn't belong elsewhere winds up.2 In this section, you can find:

enabl e- aut o- pr ops
This instructs Subversion to automatically set properties on newly added or imported files. The default value is no, so set this
toyes to enablethisfeature. The[aut o- pr ops] section of thisfile specifies which properties are to be set on which files.

gl obal -i gnores
When running the svn status command, Subversion lists unversioned files and directories along with the versioned ones, an-
notating them with a ? character (see the section called “ See an overview of your changes’). Sometimes it can be annoying to
see uninteresting, unversioned items—for example, object files that result from a program's compilation—in this display. The
gl obal -i gnor es optionisalist of whitespace-delimited globs that describe the names of files and directories that Subver-
sion should not display unless they are versioned. The default value is *. 0o *.lo *.la *.al .libs *.so
.50.[0-9] *.a *.pyc *.pyo *.rej *~ #*# . #* .*.swp .DS Store.

Aswedll as svn status, the svn add and svn import commands aso ignore files that match the list when they are scanning a
directory. You can override this behavior for a single instance of any of these commands by explicitly specifying the filename,
or by using the - - no- i gnor e command-line flag.

For information on finer-grained control of ignored items, see the section called “Ignoring Unversioned ltems”.

i nteractive-conflicts
This is a Boolean option that specifies whether Subversion should try to resolve conflicts interactively. If its value is yes
(which is the default value), Subversion will prompt the user for how to handle conflicts in the manner demonstrated in the
section called “Resolve Any Conflicts’. Otherwise, it will simply flag the conflict and continue its operation, postponing resol-
ution to alater time.

| og- encodi ng
This variable sets the default character set encoding for commit log messages. It's a permanent form of the - - encodi ng op-
tion (see the section called “svn Options’). The Subversion repository stores log messages in UTF-8 and assumes that your log
message is written using your operating system's native locale. You should specify a different encoding if your commit mes-
sages are written in any other encoding.

m ne-types-file
This option, new to Subversion 1.5, specifies the path of a MIME types mapping file, such asthe ni ne. t ypes file provided
by the Apache HTTP Server. Subversion uses thisfile to assign MIME types to newly added or imported files. See the section
called “ Automatic Property Setting” and the section called “File Content Type” for more about Subversion's detection and use
of file content types.

no- unl ock
This Boolean option corresponds to svn commit's - - no- unl ock option, which tells Subversion not to release locks on files
you've just committed. If this runtime option is set to yes, Subversion will never release locks automatically, leaving you to
run svn unlock explicitly. It defaultsto no.

preserved-conflict-file-exts
The value of this option is a space-delimited list of file extensions that Subversion should preserve when generating conflict fi-
lenames. By default, the list is empty. This option is new to Subversion 1.5.

When Subversion detects conflicting file content changes, it defers resolution of those conflicts to the user. To assist in theres-
olution, Subversion keeps pristine copies of the various competing versions of the file in the working copy. By default, those
conflict files have names constructed by appending to the original filename a custom extension such as . mi ne or . REV
(where REV is arevision number). A mild annoyance with this naming scheme is that on operating systems where afile's ex-
tension determines the default application used to open and edit that file, appending a custom extension prevents the file from
being easily opened by its native application. For example, if the file Rel easeNot es. pdf was conflicted, the conflict files

2Anyone for potluck dinner?

227

Customizing Y our Subversion Experience

might be named Rel easeNot es. pdf . m ne or Rel easeNot es. pdf . r4231. While your system might be configured
to use Adobe's Acrobat Reader to open files whose extensions are . pdf , there probably isn't an application configured on
your system to open all fileswhose extensionsare . r 4231.

You can fix this annoyance by using this configuration option, though. For files with one of the specified extensions, Subver-
sion will append to the conflict file names the custom extension just as before, but then also reappend the file's original exten-
sion. Using the previous example, and assuming that pdf is one of the extensions configured in this list thereof, the conflict
files generated for Rel easeNot es. pdf would instead be named Rel easeNot es. pdf . i ne. pdf and Rel ease-
Not es. pdf . r 4231. pdf . Because each fileendsin . pdf , the correct default application will be used to view them.

use-commit-tines

Normally your working copy files have timestamps that reflect the last time they were touched by any process, whether your
own editor or some svn subcommand. This is generally convenient for people devel oping software, because build systems of -
ten look at timestamps as away of deciding which files need to be recompiled.

In other situations, however, it's sometimes nice for the working copy files to have timestamps that reflect the last time they
were changed in the repository. The svn export command always places these “last-commit timestamps’ on trees that it pro-
duces. By setting this config variable to yes, the svn checkout, svn update, svn switch, and svn revert commands will also
set |ast-commit timestamps on files that they touch.

The [aut o- pr ops] section controls the Subversion client's ability to automatically set properties on files when they are added
or imported. It contains any number of key-value pairs in the format PATTERN = PROPNAME=VALUE[; PROPNAMVE=VALUE

.], where PATTERN is a file pattern that matches one or more filenames and the rest of the line is a semicolon-delimited set of

property assignments. (If you need to use a semicolon in your property's name or value, you can escape it by doubling it.)

$

[
*
*
*

: m)%-ofﬁ{ﬁg

cat ~/.subversion/config

aut o- pr ops]

c = svn:eol -style=native

.htm = svn:eol -styl e=native;svn: mnme-type=text/htnl;; charset=UTF8
.sh = svn: eol -styl e=nati ve; svn: execut abl e

cd projects/ nyproject
svn st atus
wwv i ndex. ht ni
svn add ww/ i ndex. ht m
wwv i ndex. ht n
svn di ff ww/ i ndex. ht ni

Property changes on: ww/ i ndex. htn

Added: svn:m ne-type

-0,0 +1

+text/htm ; charset=UTF8
Added: svn:eol -style

-0,0 +1

+native

Multiple matches on a file will result in multiple propsets for that file; however, there is no guarantee that auto-props will be ap-
plied in the order in which they are listed in the config file, so you can't have one rule “override” another. You can find several ex-
amples of auto-props usage in the conf i g file. Lastly, don't forget to set enabl e- aut o- props toyes inthem scel | any
section if you want to enable auto-props.

Localization

228

Customizing Y our Subversion Experience

Localization is the act of making programs behave in a region-specific way. When a program formats numbers or dates in a way
specific to your part of the world or prints messages (or accepts input) in your native language, the program is said to be localized.
This section describes steps Subversion has made toward localization.

Understanding Locales

Most modern operating systems have a notion of the “current locale”—that is, the region or country whose localization conven-
tions are honored. These conventions—typically chosen by some runtime configuration mechanism on the computer—affect the
way in which programs present data to the user, as well as the way in which they accept user input.

On most Unix-like systems, you can check the values of the locale-related runtime configuration options by running the locale
command:

$ local e

LANG=
LC_COLLATE="C"
LC CTYPE="C"
LC_MESSAGES="C"
LC_MONETARY="C"
LC NUMERI C="C"

LC_TI ME="C"
LC_ALL="C"
$

The output is alist of locale-related environment variables and their current values. In this example, the variables are all set to the
default Clocale, but users can set these variables to specific country/language code combinations. For example, if one were to set
the LC_TI ME variable to f r _CA, programs would know to present time and date information formatted according to a French-
speaking Canadian's expectations. And if one were to set the LC_MESSAGES variableto zh_ TW programs would know to present
human-readable messages in Traditional Chinese. Setting the LC_ALL variable has the effect of changing every locale variable to
the same value. The value of LANGis used as a default value for any locale variable that is unset. To seethe list of available locales
on aUnix system, run thecommand | ocal e - a.

On Windows, locale configuration is done via the “Regional and Language Options’ control panel item. There you can view and
select the values of individual settings from the available locales, and even customize (at a sickening level of detail) several of the
display formatting conventions.

Subversion's Use of Locales

The Subversion client, svn, honors the current locale configuration in two ways. First, it notices the value of the LC_MESSAGES
variable and attempts to print all messages in the specified language. For example:

$ export LC MESSAGES=de DE

$ svn hel p cat

cat: G bt den Inhalt der angegebenen Dateien oder URLs aus.
Aufruf: cat ZIEL[@REV]...

This behavior works identically on both Unix and Windows systems. Note, though, that while your operating system might have
support for a certain locale, the Subversion client still may not be able to speak the particular language. In order to produce local-
ized messages, human volunteers must provide trandations for each language. The trandations are written using the GNU gettext
package, which results in trandlation modules that end with the . no filename extension. For example, the German trandation file

229

Customizing Y our Subversion Experience

is named de. nb. These trandation files are installed somewhere on your system. On Unix, they typically live in /
usr/ share/ | ocal e/, while on Windows they're often found in the shar e\ | ocal e\ folder in Subversion'sinstallation area.
Once installed, a module is named after the program for which it provides trandations. For example, the de. no file may ulti-
mately end up installed as / usr/ shar e/ | ocal e/ de/ LC_MESSAGES/ subver si on. no. By browsing the installed . nmo
files, you can see which languages the Subversion client is able to speak.

The second way in which the locale is honored involves how svn interprets your input. The repository stores al paths, filenames,
and log messages in Unicode, encoded as UTF-8. In that sense, the repository is internationalized—that is, the repository is ready
to accept input in any human language. This means, however, that the Subversion client is responsible for sending only UTF-8 file-
names and |og messages into the repository. To do this, it must convert the data from the native locale into UTF-8.

For example, suppose you create a file named caf f €. t xt , and then when committing the file, you write the log message as
“Adesso il caffe é pit forte.” Both the filename and the log message contain non-ASCII characters, but because your locale is set to
i t_IT,the Subversion client knows to interpret them as Italian. It uses an Italian character set to convert the datato UTF-8 before
sending it off to the repository.

Note that while the repository demands UTF-8 filenames and log messages, it does not pay attention to file contents. Subversion
treats file contents as opague strings of bytes, and neither client nor server makes an attempt to understand the character set or en-
coding of the contents.

Character Set Conversion Errors

While using Subversion, you might get hit with an error related to character set conversions:

svn: E000022: Can't convert string fromnative encoding to ' UTF-8':

svn: E000022: Can't convert Stri ng from'UTF-8'" to native encoding:

Errors such as this typically occur when the Subversion client has received a UTF-8 string from the repository, but not all of
the charactersin that string can be represented using the encoding of the current locale. For example, if your localeisen_US
but a collaborator has committed a Japanese filename, you're likely to see this error when you receive the file during an svn
update.

The solution is either to set your locale to something that can represent the incoming UTF-8 data, or to change the filename
or log message in the repository. (And don't forget to slap your collaborator's hand—projects should decide on common lan-
guages ahead of time so that all participants are using the same locale.)

Using External Editors

The most obvious way to get data into Subversion is through the addition of files to version control, committing changes to those
files, and so on. But other pieces of information besides merely versioned file data live in your Subversion repository. Some of
these bits of information—commit log messages, lock comments, and some property values—tend to be textual in nature and are
provided explicitly by users. Most of this information can be provided to the Subversion command-line client using the -
-nmessage (-n) and - -fil e (- F) options with the appropriate subcommands.

Each of these options has its pros and cons. For example, when performing a commit, - - fi | e (- F) works well if you've already
prepared atext file that holds your commit log message. If you didn't, though, you can use - - nressage (- m to provide alog mes-
sage on the command line. Unfortunately, it can be tricky to compose anything more than a simple one-line message on the com-
mand line. Users want more flexibility—multiline, free-form log message editing on demand.

Subversion supports this by allowing you to specify an external text editor that it will launch as necessary to give you a more
powerful input mechanism for this textual metadata. There are several ways to tell Subversion which editor you'd like use. Subver-

230

Customizing Y our Subversion Experience

sion checks the following things, in the order specified, when it wants to launch such an editor:

1. - - edi t or - cnd command-line option
SVN_EDI TOR environment variable

edi t or - cnd runtime configuration option
VI SUAL environment variable

EDI TOR environment variable

o o ~ w b

Possibly, afallback value built into the Subversion libraries (not present in the official builds)

The value of any of these options or variables is the beginning of a command line to be executed by the shell. Subversion appends
to that command line a space and the pathname of a temporary file to be edited. So, to be used with Subversion, the configured or
specified editor needs to support an invocation in which its last command-line parameter is afile to be edited, and it should be able
to save thefilein place and return a zero exit code to indicate success.

As noted, external editors can be used to provide commit log messages to any of the committing subcommands (such as svn com-
mit or import, svn mkdir or delete when provided a URL target, etc.), and Subversion will try to launch the editor automatically
if you don't specify either of the - - message (-m or--fil e (- F) options. The svh propedit command is built almost entirely
around the use of an external editor. And beginning in version 1.5, Subversion will also use the configured external text editor
when the user asks it to launch an editor during interactive conflict resolution. Oddly, there doesn't appear to be a way to use ex-
ternal editorsto interactively provide lock comments.

Using External Differencing and Merge Tools

The interface between Subversion and external two- and three-way differencing tools harkens back to a time when Subversion's
only contextual differencing capabilities were built around invocations of the GNU diffutils toolchain, specifically the diff and
diff3 utilities. To get the kind of behavior Subversion needed, it called these utilities with more than a handful of options and para-
meters, most of which were quite specific to the utilities. Some time later, Subversion grew its own internal differencing library,
and as a failover mechanism, the - - di ff-cnd and - - di f f 3- cnd options were added to the Subversion command-line client
so that users could more easily indicate that they preferred to use the GNU diff and diff3 utilities instead of the newfangled internal
diff library. If those options were used, Subversion would simply ignore the internal diff library, and fall back to running those ex-
ternal programs, lengthy argument lists and all. And that's where things remain today.

It didn't take long for folks to realize that having such easy configuration mechanisms for specifying that Subversion should use the
external GNU diff and diff3 utilities located at a particular place on the system could be applied toward the use of other differen-
cing tools, too. After all, Subversion didn't actually verify that the things it was being told to run were members of the GNU diffu-
tils toolchain. But the only configurable aspect of using those external tools is their location on the system—not the option set,
parameter order, and so on. Subversion continues to throw all those GNU utility options at your external diff tool regardless of
whether that program can understand those options. And that's where things get unintuitive for most users.

The decision on when to fire off a contextual two- or three-way diff as part of alarger Subversion operation is made
/ entirely by Subversion and is affected by, among other things, whether the files being operated on are human-read-
able as determined by their svn: m ne-t ype property. This means, for example, that even if you had the niftiest
Microsoft Word-aware differencing or merging tool in the universe, it would never be invoked by Subversion as long
as your versioned Word documents had a configured MIME type that denoted that they were not human-readable
(suchasappl i cat i on/ nswor d). For more about MIME type settings, see the section called “File Content Type’

Much later, Subversion 1.5 introduced interactive resolution of conflicts (described in the section called “ Resolve Any Conflicts’).
One of the options that this feature provides to users is the ability to interactively launch athird-party merge tool. If this action is
taken, Subversion will check to see if the user has specified such a tool for use in this way. Subversion will first check the

231

Customizing Y our Subversion Experience

SVN_MERGE environment variable for the name of an external merge tool. If that variable is not set, it will look for the same in-
formation in the value of the ner ge-t ool - crd runtime configuration option. Upon finding a configured external merge tool, it
will invoke that tool.

While the general purposes of the three-way differencing and merge tools are roughly the same (finding a way to

/ make separate-but-overlapping file changes live in harmony), Subversion exercises each of these options at different
times and for different reasons. The internal three-way differencing engine and its optional external replacement are
used when interaction with the user is not expected. In fact, significant delay introduced by such atool can actually
result in the failure of some time-sensitive Subversion operations. It's the external merge tool that is intended to be in-
voked interactively.

Now, while the interface between Subversion and an external merge tool is significantly less convoluted than that between Subver-
sion and the diff and diff3 tools, the likelihood of finding such atool whose calling conventions exactly match what Subversion ex-
pects is still quite low. The key to using external differencing and merge tools with Subversion is to use wrapper scripts, which
convert the input from Subversion into something that your specific differencing tool can understand, and then convert the output
of your tool back into aformat that Subversion expects. The following sections cover the specifics of those expectations.

External diff

Subversion calls external diff programs with parameters suitable for the GNU diff utility, and expects only that the externa pro-
gram will return with a successful error code per the GNU diff definition thereof. For most alternative diff programs, only the sixth
and seventh arguments—the paths of the files that represent the left and right sides of the diff, respectively—are of interest. Note
that Subversion runs the diff program once per modified file covered by the Subversion operation, so if your program runs in an
asynchronous fashion (or is “backgrounded”), you might have several instances of it all running simultaneously. Finally, Subver-
sion expects that your program return an error code of 1 if your program detected differences, or O if it did not—any other error
code is considered afatal error.

Example 7.2, “diffwrap.py” and Example 7.3, “diffwrap.bat” are templates for external diff tool wrappers in the Python and Win-
dows batch scripting languages, respectively.

Example 7.2. diffwrap.py

#!/ usr/ bin/env python

i nport sys
i mport os

Configure your favorite diff program here.
DIFF = "/usr/local/bin/ny-diff-tool"

Subversion provides the paths we need as the |ast two paraneters.
LEFT = sys.argv[-2]
RI GHT = sys. argv|-1]

Call the diff command (change the following line to make sense for
your diff program.

cmd = [DIFF, '--left', LEFT, '--right', RIGHT]

os. execv(cnd[0], cnd)

Return an errorcode of O if no differences were detected, 1 if sone were.
Any other errorcode will be treated as fatal.

3The GNU diff manual page putsit thisway: “An exit status of 0 means no differences were found, 1 means some differences were found, and 2 means trouble.”

232

Customizing Y our Subversion Experience

Example 7.3. diffwrap.bat

@CHO COFF

REM Confi gure your favorite diff program he r
SET DI FF="C:\ Program Fi | es\ Funky Stuff\M/ Di ff Tool . exe"

REM Subver si on provi des the paths we need as the |last two paraneters.
REM These are paraneters 6 and 7 (unless you use svn diff -x, in

REM whi ch case, all bets are off).

SET LEFT=%6

SET RI GHT=%

REM Cal |l the diff command (change the following |ine to nake sense for
REM your diff program.
Wl FF% --1eft %AEFT% --right 9RI GHT%

REM Return an errorcode of O if no differences were detected, 1 if sone were.
REM Any ot her errorcode will be treated as fatal.

External diff3

Subversion invokes three-way differencing programs to perform non-interactive merges. When configured to use an external three-
way differencing program, it executes that program with parameters suitable for the GNU diff3 utility, expecting that the external
program will return with a successful error code and that the full file contents that result from the completed merge operation are
printed on the standard output stream (so that Subversion can redirect them into the appropriate version-controlled file). For most
aternative merge programs, only the ninth, tenth, and eleventh arguments, the paths of the files which represent the “mine”,
“older”, and “yours’ inputs, respectively, are of interest. Note that because Subversion depends on the output of your merge pro-
gram, your wrapper script must not exit before that output has been delivered to Subversion. When it finally does exit, it should re-
turn an error code of O if the merge was successful, or 1 if unresolved conflicts remain in the output—any other error code is con-
sidered afatal error.

Example 7.4, “diff3wrap.py” and Example 7.5, “diff3wrap.bat” are templates for external three-way differencing tool wrappersin
the Python and Windows batch scripting languages, respectively.

Example 7.4. diff3wrap.py

#!/ usr/ bin/env python

i mport sys
i mport os

Configure your favorite three-way diff program here.
DI FF3 = "/usr/local/bin/mnmy-diff3-tool"

Subversion provides the paths we need as the | ast three paraneters.
M NE sys. argv] - 3]
OLDER = sys. argv]|-2]
YOURS = sys.argv][-1]

Call the three-way diff comand (change the following line to nmake
sense for your three-way diff program.

cnd = [DIFF3, '--older', OLDER, '--mine', MNE '--yours', YOURS]

os. execv(cnd[0], cnd)

233

Customizing Y our Subversion Experience

After performng the nmerge, this script needs to print the contents
of the nmerged file to stdout. Do that in whatever way you see fit.
Return an errorcode of 0 on successful nmerge, 1 if unresolved conflicts
remain in the result. Any other errorcode will be treated as fatal.

Example 7.5. diff3wrap.bat

@ECHO OFF

REM Configure your favorite three-way di ff program here.
SET DI FF3="C:\ Program Fi | es\ Funky Stuff\My Di ff3 Tool . exe"

REM Subver si on provi des the paths we need as the |ast three paraneters.
REM These are paraneters 9, 10, and 11. But we have access to only
REM ni ne paraneters at a tinme, so we shift our nine-paranmeter w ndow
REM twice to let us get to what we need.

SHI FT

SH FT

SET M NE=%

SET OLDER=%8

SET YOURS=%9

REM Cal | the three-way diff conmmand (change the following Iine to nake
REM sense for your three-way diff progran).
9Dl FF3% - - ol der %OLDER% --m ne 9%V NE% - - your s %/OURS%

REM After performing the nmerge, this script needs to print the contents
REM of the nerged file to stdout. Do that in whatever way you see fit.
REM Return an errorcode of 0 on successful nmerge, 1 if unresolved conflicts
REM remain in the result. Any other errorcode will be treated as fatal.

External merge

Subversion optionally invokes an external merge tool as part of its support for interactive conflict resolution. It provides as argu-
ments to the merge tool the following: the path of the unmodified base file, the path of the “theirs’ file (which contains upstream
changes), the path of the “mine” file (which contains local modifications), the path of the file into which the final resolved contents
should be stored by the merge tool, and the working copy path of the conflicted file (relative to the original target of the merge op-
eration). The merge tool is expected to return an error code of 0 to indicate success, or 1 to indicate failure.

Example 7.6, “mergewrap.py” and Example 7.7, “mergewrap.bat” are templates for external merge tool wrappers in the Python
and Windows batch scripting languages, respectively.

Example 7.6. mergewr ap.py

#1/ usr/ bin/env python

i mport sys
i mport os

Configure your favorite nerge program here.
MERGE = "/usr/1 ocal/bin/ my-merge-tool"

234

Customizing Y our Subversion Experience

CGet the paths provided by Subversion.
BASE = sys.argv[1]

THEI RS = sys. argv]| 2]
MNE = sys.argv|3]
MERGED = sys. ar gv] 4]
WCPATH = sys. ar gv[5]

Call the nmerge command (change the following line to nake sense for

your merge progran).

cmd = [DIFF3, '--base', BASE, '--mine', MNE, '--theirs', THEIRS,
'--outfile', MERGED

os. execv(cnd[0], cnd)

Return an errorcode of 0 if the conflict was resolved; 1 otherw se.
Any other errorcode will be treated as fatal.

Example 7.7. mer gewr ap.bat

@ECHO OFF

REM Confi gure your favorite merge program here.
SET DI FF3="C:\ Program Fi | es\ Funky Stuff\M/ Merge Tool . exe"

REM Get the paths provided by Subversion.
SET BASE=%

SET THEI RS=%2

SET M NE=9%8

SET MERGED=%!

SET WCPATH=%

REM Cal | the nerge conmand (change the following [ine to nake sense for
REM your nerge progran)j.
9l FF3% - - base YBASE% --mnmine % NE% - -theirs %HEI RS% --outfil e %WERGEDY%

REM Return an errorcode of O if the conflict was resolved; 1 otherw se.
REM Any other errorcode will be treated as fatal.

Summary

Sometimes there's a single right way to do things; sometimes there are many. Subversion's developers understand that while the
majority of its exact behaviors are acceptable to most of its users, there are some corners of its functionality where such a univer-
saly pleasing approach doesn't exist. In those places, Subversion offers users the opportunity to tell it how they want it to behave.

In this chapter, we explored Subversion's runtime configuration system and other mechanisms by which users can control those
configurable behaviors. If you are a developer, though, the next chapter will take you one step further. It describes how you can
further customize your Subversion experience by writing your own software against Subversion's libraries.

235

Chapter 8. Embedding Subversion

Subversion has a modular design: it's implemented as a collection of libraries written in C. Each library has a well-defined purpose
and application programming interface (API), and that interface is available not only for Subversion itself to use, but for any soft-
ware that wishes to embed or otherwise programmatically control Subversion. Additionally, Subversion's API is available not only
to other C programs, but also to programs written in higher-level languages such as Python, Perl, Java, and Ruby.

This chapter is for those who wish to interact with Subversion through its public API or its various language bindings. If you wish
to write robust wrapper scripts around Subversion functionality to simplify your own life, are trying to develop more complex in-
tegrations between Subversion and other pieces of software, or just have an interest in Subversion's various library modules and
what they offer, this chapter is for you. If, however, you don't foresee yourself participating with Subversion at such a level, fed
free to skip this chapter with the confidence that your experience as a Subversion user will not be affected.

Layered Library Design

Each of Subversion's core libraries can be said to exist in one of three main layers—the Repository layer, the Repository Access
(RA) layer, or the Client layer (see Figure 1, “ Subversion's architecture” in the Preface). We will examine these layers shortly, but
first, let's briefly summarize Subversion's various libraries. For the sake of consistency, we will refer to the libraries by their exten-
sionless Unix library names (1 i bsvn_fs, i bsvn_wc, nod_dav_svn, etc.).

libsvn _client
Primary interface for client programs

libsvn_delta
Tree and byte-stream differencing routines

libsvn_diff
Contextual differencing and merging routines

libsvn fs
Filesystem commons and module loader

libsvn_fs base
The Berkeley DB filesystem backend

libsvn _fs fs
The native filesystem (FSFS) backend

libsvn ra
Repository Access commons and module loader

libsvn_ra local
The local Repository Access module

libsvn_ra neon
The WebDAV Repository Access module

libsvn_ra serf
Another (experimental) WebDAV Repository Access module

libsvn_ra svn
The custom protocol Repository Access module

libsvn_repos
Repository interface

236

Embedding Subversion

libsvn_subr
Miscellaneous hel pful subroutines

libsvn_wc
The working copy management library

mod_authz_svn
Apache authorization module for Subversion repositories access via WebDAV

mod_dav_svn
Apache module for mapping WebDAV operations to Subversion ones

The fact that the word “miscellaneous’ appears only once in the previous list is a good sign. The Subversion development team is
serious about making sure that functionality lives in the right layer and libraries. Perhaps the greatest advantage of the modular
design isits lack of complexity from a developer's point of view. As a developer, you can quickly formulate that kind of “big pic-
ture” that allows you to pinpoint the location of certain pieces of functionality with relative ease.

Another benefit of modularity is the ability to replace a given module with a whole new library that implements the same API
without affecting the rest of the code base. In some sense, this happens within Subversion aready. Thel i bsvn_ra_| ocal ,
libsvn_ra _neon, libsvn_ra serf,and!|ibsvn_ra_svn libraries each implement the same interface, all working as
plug-insto | i bsvn_ra. And all four communicate with the Repository layer—I i bsvn_ra_I| ocal connects to the repository
directly; the other three do so over anetwork. Thel i bsvn_fs_base andl i bsvn_fs_f s libraries are another pair of libraries
that implement the same functionality in different ways—both are plug-insto the common | i bsvn_f s library.

The client itself also highlights the benefits of modularity in the Subversion design. Subversion's| i bsvn_cl i ent library isa
one-stop shop for most of the functionality necessary for designing aworking Subversion client (see the section called “Client Lay-
er"). So while the Subversion distribution provides only the svn command-line client program, severa third-party programs
provide various forms of graphical client Uls. These GUIs use the same APIs that the stock command-line client does. This type of
modularity has played alarge role in the proliferation of available Subversion clients and I DE integrations and, by extension, to the
tremendous adoption rate of Subversion itself.

Repository Layer

When referring to Subversion's Repository layer, we're generally talking about two basic concepts—the versioned filesystem im-
plementation (accessed vial i bsvn_f s, and supported by its| i bsvn_fs_base and | i bsvn_f s_fs plug-ins), and the re-
pository logic that wraps it (as implemented in | i bsvn_r epos). These libraries provide the storage and reporting mechanisms
for the various revisions of your version-controlled data. This layer is connected to the Client layer via the Repository Access lay-
er, and is, from the perspective of the Subversion user, the stuff at the “other end of theline.”

The Subversion filesystem is not a kernel-level filesystem that one would install in an operating system (such as the Linux ext2 or
NTFS), but instead is a virtual filesystem. Rather than storing “files” and “directories’ as real files and directories (the kind you
can navigate through using your favorite shell program), it uses one of two available abstract storage backends—either a Berkeley
DB database environment or a flat-file representation. (To learn more about the two repository backends, see the section called
“Choosing a Data Store”.) There has even been considerable interest by the development community in giving future releases of
Subversion the ability to use other backend database systems, perhaps through a mechanism such as Open Database Connectivity
(ODBC). In fact, Google did something similar to this before launching the Google Code Project Hosting service: they announced
in mid-2006 that members of its open source team had written a new proprietary Subversion filesystem plug-in that used Google's
ultra-scalable Bigtable database for its storage.

The filesystem API exported by | i bsvn_f s contains the kinds of functionality you would expect from any other filesystem
APl—you can create and remove files and directories, copy and move them around, modify file contents, and so on. It also has fea-
turesthat are not quite as common, such as the ability to add, modify, and remove metadata (“ properties’) on each file or directory.
Furthermore, the Subversion filesystem is a versioning filesystem, which means that as you make changes to your directory tree,
Subversion remembers what your tree looked like before those changes. And before the previous changes. And the previous ones.
And so on, all the way back through versioning time to (and just beyond) the moment you first started adding things to the filesys-
tem.

237

Embedding Subversion

All the modifications you make to your tree are done within the context of a Subversion commit transaction. The following is a
simplified general routine for modifying your filesystem:

1. Begin a Subversion commit transaction.

2. Make your changes (adds, deletes, property modifications, etc.).

3. Commit your transaction.

Once you have committed your transaction, your filesystem modifications are permanently stored as historical artifacts. Each of

these cycles generates a single new revision of your tree, and each revision is forever accessible as an immutable snapshot of “the
way things were.”

The Transaction Distraction

The notion of a Subversion transaction can become easily confused with the transaction support provided by the underlying
database itself, especially given the former's close proximity to the Berkeley DB database codein |l i bsvn_fs_base. Both
types of transaction exist to provide atomicity and isolation. In other words, transactions give you the ability to perform a set
of actions in an all-or-nothing fashion—either all the actions in the set complete with success, or they al get treated as
though none of them ever happened—and in away that does not interfere with other processes acting on the data.

Database transactions generally encompass small operations related specifically to the modification of datain the database it-
self (such as changing the contents of a table row). Subversion transactions are larger in scope, encompassing higher-level
operations such as making modifications to a set of files and directories that are intended to be stored as the next revision of
the filesystem tree. If that isn't confusing enough, consider the fact that Subversion uses a database transaction during the
creation of a Subversion transaction (so that if the creation of a Subversion transaction fails, the database will ook as though
we had never attempted that creation in the first place)!

Fortunately for users of the filesystem API, the transaction support provided by the database system itself is hidden almost
entirely from view (as should be expected from a properly modularized library scheme). It is only when you start digging in-
to the implementation of the filesystem itself that such things become visible (or interesting).

Most of the functionality the filesystem interface provides deals with actions that occur on individual filesystem paths. That is,
from outside the filesystem, the primary mechanism for describing and accessing the individual revisions of files and directories
comes through the use of path strings such as/ f oo/ bar , just as though you were addressing files and directories through your fa-
vorite shell program. You add new files and directories by passing their paths-to-be to the right API functions. You query for in-
formation about them by the same mechanism.

Unlike most filesystems, though, a path alone is not enough information to identify afile or directory in Subversion. Think of adir-
ectory tree as a two-dimensional system, where a node's siblings represent a sort of |eft-and-right motion, and navigating into the
node's subdirectories represents a downward motion. Figure 8.1, “Files and directories in two dimensions’ shows a typical repres-
entation of atree as exactly that.

Figure8.1. Filesand directoriesin two dimensions

238

Embedding Subversion

The difference here is that the Subversion filesystem has a nifty third dimension that most filesystems do not have—Timel! Yinthe
filesystem interface, nearly every function that has a pat h argument also expects ar oot argument. Thissvn_fs_root _t ar-
gument describes either arevision or a Subversion transaction (which is simply arevision in the making) and provides that third di-
mension of context needed to understand the difference between / f 0o/ bar in revision 32, and the same path as it exists in revi-
sion 98. Figure 8.2, “Versioning time—the third dimension!” shows revision history as an added dimension to the Subversion
filesystem universe.

Figure 8.2. Versioning time—thethird dimension!

foo/:5

Aswe mentioned earlier, thel i bsvn_f s API looks and feels like any other filesystem, except that it has this wonderful version-
ing capability. It was designed to be usable by any program interested in aversioning filesystem. Not coincidentally, Subversion it-
self isinterested in that functionality. But while the filesystem API should be sufficient for basic file and directory versioning sup-
port, Subversion wants more—and that iswherel i bsvn_r epos comesin.

The Subversion repository library (I i bsvn_r epos) sits (logically speaking) atop the | i bsvn_f s API, providing additional
functionality beyond that of the underlying versioned filesystem logic. It does not completely wrap each and every filesystem func-

YWe understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was actually the fourth dimension, and we apolo-
gize for any emotional traumainduced by our assertion of a different theory.

239

Embedding Subversion

tion—only certain major steps in the general cycle of filesystem activity are wrapped by the repository interface. Some of these in-
clude the creation and commit of Subversion transactions and the modification of revision properties. These particular events are
wrapped by the repository layer because they have hooks associated with them. A repository hook system is not strictly related to
implementing a versioning filesystem, so it livesin the repository wrapper library.

The hooks mechanism is but one of the reasons for the abstraction of a separate repository library from the rest of the filesystem
code. Thel i bsvn_r epos API provides several other important utilities to Subversion. These include the abilities to:

« Create, open, destroy, and perform recovery steps on a Subversion repository and the filesystem included in that repository.
 Describe the differences between two filesystem trees.

* Query for the commit log messages associated with all (or some) of the revisions in which a set of files was modified in the
filesystem.

* Generate a human-readable “dump” of the filesystem—a compl ete representation of the revisionsin the filesystem.

* Parsethat dump format, loading the dumped revisions into a different Subversion repository.

As Subversion continues to evolve, the repository library will grow with the filesystem library to offer increased functionality and
configurable option support.

Repository Access Layer

If the Subversion Repository layer is at “the other end of the line,” the Repository Access (RA) layer isthe line itself. Charged with
marshaling data between the client libraries and the repository, this layer includes the | i bsvn_r a module loader library, the RA
modules themselves (which currently includes | i bsvn_ra_neon, |i bsvn_ra_l ocal, I'i bsvn_ra_serf, and | i bs-
vn_ra_svn), and any additional libraries needed by one or more of those RA modules (such as the mod_dav_svn Apache
moduleor | i bsvn_ra_svn'sserver, svnserve).

Since Subversion uses URL s to identify its repository resources, the protocol portion of the URL scheme (usualy file://, ht-
tp://,https://,svn://,orsvn+ssh:/ /) isused to determine which RA module will handle the communications. Each
module registers a list of the protocols it knows how to “speak” so that the RA loader can, at runtime, determine which module to
use for the task at hand. Y ou can determine which RA modules are available to the Subversion command-line client, and what pro-
tocols they claim to support, by runningsvn - -ver si on:

$ svn --version
svn, version 1.7.0
conpil ed Nov 15 2011, 10:10:24

Copyright (C 2011 The Apache Software Foundati on.

This software consists of contributions nade by nany people; see the NOTICE
file for nore information.

Subversion is open source software, see http://subversion.apache. org/

The follow ng repository access (RA) nodul es are avail abl e:

* ra_neon : Module for accessing a repository via WbDAV protocol using Neon.
- handles "http' schene
- handl es 'https' schene

* ra_svn : Mdule for accessing a repository using the svn network protocol
- with Cyrus SASL aut hentication
- handl es 'svn' schene

* ra_local : Mdule for accessing a repository on |ocal disk.
- handles 'file'" schene

* ra_serf : Module for accessing a repository via WbDAV protocol using serf.
- handles 'http' schene

240

Embedding Subversion

- handl es 'https' schene

The public API exported by the RA layer contains functionality necessary for sending and receiving versioned data to and from the
repository. And each of the available RA plug-insis able to perform that task using a specific protocol—! i bsvn_ra_neon and
i bsvn_ra_serf speak HTTP/WebDAV (optionally using SSL encryption) with an Apache HTTP Server that is running the
nod_dav_svn Subversion server module; | i bsvn_r a_svn speaks a custom network protocol with the svnserve program; and
So on.

For those who wish to access a Subversion repository using still another protocol, that is precisely why the Repository Access layer
is modularized! Developers can simply write a new library that implements the RA interface on one side and communicates with
the repository on the other. Y our new library can use existing network protocols or you can invent your own. Y ou could use inter-
process communication (1PC) calls, or—let's get crazy, shall we?—you could even implement an email-based protocol. Subversion
supplies the APIs; you supply the creativity.

Client Layer

On the client side, the Subversion working copy is where al the action takes place. The bulk of functionality implemented by the
client-side libraries exists for the sole purpose of managing working copies—directories full of files and other subdirectories that
serve as a sort of local, editable “reflection” of one or more repository locations—and propagating changes to and from the Repos-
itory Access layer.

Subversion's working copy library, | i bsvn_wc, is directly responsible for managing the data in the working copies. To accom-
plish this, the library stores administrative information about the working copy within a special subdirectory. This subdirectory,
named . svn, is present in each working copy and contains various other files and directories that record state and provide a
private workspace for administrative action. For those familiar with CVS, this. svn subdirectory is similar in purpose to the CVS
administrative directories found in CV S working copies.

The Subversion client library, | i bsvn_cl i ent , has the broadest responsibility; itsjob is to mingle the functionality of the work-
ing copy library with that of the Repository Access layer, and then to provide the highest-level API to any application that wishes
to perform general revision control actions. For example, the functionsvn_cl i ent _checkout () takesaURL as an argument.
It passes this URL to the RA layer and opens an authenticated session with a particular repository. It then asks the repository for a
certain tree, and sends this tree into the working copy library, which then writes a full working copy to disk (. svn directories and
all).

The client library is designed to be used by any application. While the Subversion source code includes a standard command-line
client, it should be very easy to write any number of GUI clients on top of the client library. New GUIs (or any new client, really)
for Subversion need not be clunky wrappers around the included command-line client—they have full access viathe | i bs-

vn_cl i ent API to the same functionality, data, and callback mechanisms that the command-line client uses. In fact, the Subver-
sion source code tree contains a small C program (which you can find at t ool s/ exanpl es/ m ni mal _cl i ent. c) that exem-
plifies how to wield the Subversion API to create a simple client program.

Binding Directly—A Word About Correctness

Why should your GUI program bind directly with al i bsvn_cl i ent instead of acting as a wrapper around a command-
line program? Besides simply being more efficient, it can be more correct as well. A command-line program (such as the one
supplied with Subversion) that binds to the client library needs to effectively trandlate feedback and requested data bits from
C types to some form of human-readable output. This type of trandlation can be lossy. That is, the program may not display
al of theinformation harvested from the APl or may combine bits of information for compact representation.

If you wrap such a command-line program with yet another program, the second program has access only to aready inter-
preted (and as we mentioned, likely incomplete) information, which it must again translate into its representation format.
With each layer of wrapping, the integrity of the origina data is potentially tainted more and more, much like the result of

241

Embedding Subversion

making a copy of acopy (of acopy...) of afavorite audio or video cassette.

But the most compelling argument for binding directly to the APIs instead of wrapping other programsiis that the Subversion
project makes compatibility promises regarding its APIs. Across minor versions of those APIs (such as between 1.3 and 1.4),
no function's prototype will change. In other words, you aren't forced to update your program's source code simply because
you've upgraded to a new version of Subversion. Certain functions might be deprecated, but they still work, and this gives
you a buffer of time to eventually embrace the newer APIs. These kinds of compatibility promises do not exist for Subver-
sion command-line program output, which is subject to change from release to release.

Using the APIs

Developing applications against the Subversion library APIs s fairly straightforward. Subversion is primarily a set of C libraries,
with header (. h) files that live in the subver si on/ i ncl ude directory of the source tree. These headers are copied into your
system locations (e.g., / usr/ |1 ocal /i ncl ude) when you build and install Subversion itself from source. These headers repres-
ent the entirety of the functions and types meant to be accessible by users of the Subversion libraries. The Subversion developer
community is meticulous about ensuring that the public API is well documented—refer directly to the header files for that docu-
mentation.

When examining the public header files, the first thing you might notice is that Subversion's datatypes and functions are
namespace-protected. That is, every public Subversion symbol name begins with svn_, followed by a short code for the library in
which the symbol is defined (such aswc, cl i ent |, f s, etc.), followed by a single underscore (_), and then the rest of the symbol
name. Semipublic functions (used among source files of a given library but not by code outside that library, and found inside the
library directories themselves) differ from this naming scheme in that instead of a single underscore after the library code, they use
adouble underscore (_). Functions that are private to a given source file have no special prefixing and are declared st at i ¢. Of
course, acompiler isn't interested in these naming conventions, but they help to clarify the scope of a given function or datatype.

Another good source of information about programming against the Subversion APIs is the project's own hacking guidelines,
which you can find at http://subversion.apache.org/docs/community- guide/ This document contains useful information, which,
while aimed at developers and Would be developers of Subversion itself, is equally applicable to folks developing against Subver-
sion as a set of third-party libraries.

The Apache Portable Runtime Library

Along with Subversion's own datatypes, you will see many references to datatypes that begin with apr _—symbols from the
Apache Portable Runtime (APR) library. APR is Apache's portability library, originally carved out of its server code as an attempt
to separate the OS-specific bits from the OS-independent portions of the code. The result was alibrary that provides a generic API
for performing operations that differ mildly—or wildly—from OS to OS. While the Apache HTTP Server was obvioudly the first
user of the APR library, the Subversion developers immediately recognized the value of using APR as well. This means that there
is practically no OS-specific code in Subversion itself. Also, it means that the Subversion client compiles and runs anywhere that
the Apache HTTP Server does. Currently, thislist includes all flavors of Unix, Win32, BeOS, 0S/2, and Mac OS X.

In addition to providing consistent implementations of system calls that differ across operating wstemsf’ APR gives Subversion
immediate access to many custom datatypes, such as dynamic arrays and hash tables. Subversion uses these types extensively. But
perhaps the most pervasive APR datatype, found in nearly every Subversion APl prototype, is the apr _pool _t —the APR
memory pool. Subversion uses pools internally for all its memory aIIocatlon needs (unless an external library requires a different
memory management mechanism for data passed through its API) and while a person coding against the Subversion APIs s not
required to do the same, sheis required to provide pools to the API functions that need them. This means that users of the Subver-
sion APl must also link against APR, must call apr _i niti ali ze() toinitialize the APR subsystem, and then must create and
manage pools for use with Subversion API cals, typicaly by using svn_pool _create(), svn_pool clear(), and
svn_pool destroy().

2After all, Subversion uses Subversion's APIs, too.
3Subversion uses ANSI system calls and datatypes as much as possible.
4Neon and Berkeley DB are examples of such libraries,

242

http://subversion.apache.org/docs/community-guide/

Embedding Subversion

Programming with Memory Pools

Almost every developer who has used the C programming language has at some point sighed at the daunting task of man-
aging memory usage. Allocating enough memory to use, keeping track of those allocations, freeing the memory when you no
longer need it—these tasks can be quite complex. And of course, failure to do those things properly can result in a program
that crashes itself, or worse, crashes the computer.

Higher-level languages, on the other hand, either take the job of memory management away from you completely or make it
something you toy with only when doing extremely tight program optimization. Languages such as Java and Python use
garbage collection, allocating memory for objects when needed, and automatically freeing that memory when the object is
no longer in use.

APR provides a middle-ground approach called pool-based memory management. It allows the developer to control memory
usage at a lower resolution—per chunk (or “pool”) of memory, instead of per allocated object. Rather than using mal | oc()
and friends to allocate enough memory for a given object, you ask APR to allocate the memory from a memory pool. When
you're finished using the objects you've created in the pool, you destroy the entire pool, effectively de-allocating the memory
consumed by all the objects you alocated from it. Thus, rather than keeping track of individual objects that need to be de-
alocated, your program simply considers the general lifetimes of those objects and all ocates the objects in a pool whose life-
time (the time between the pool's creation and its deletion) matches the object's needs.

Functions and Batons

To facilitate “streamy” (asynchronous) behavior and provide consumers of the Subversion C API with hooks for handling informa-
tion in customizable ways, many functions in the API accept pairs of parameters: a pointer to a callback function, and a pointer to a
blob of memory called a baton that carries context information for that callback function. Batons are typically C structures with ad-
ditional information that the callback function needs but which is not given directly to the callback function by the driving API
function.

URL and Path Requirements

With remote version control operation as the whole point of Subversion's existence, it makes sense that some attention has been
paid to internationalization (i18n) support. After all, while “remote” might mean “across the office,” it could just as well mean
“across the globe.” To facilitate this, al of Subversion's public interfaces that accept path arguments expect those paths to be ca-
nonicalized—which is most easily accomplished by passing them through svn_dirent _canonicalize() or
svn_uri _canoni cal i ze() (depending on whether you are canonicalizing alocal system path or a URL, respectively)—and
encoded in UTF-8. This means, for example, that any new client binary that drivesthel i bsvn_cl i ent interface needs to first
convert paths from the local e-specific encoding to UTF-8 before passing those paths to the Subversion libraries, and then reconvert
any resultant output paths from Subversion back into the locale's encoding before using those paths for non-Subversion purposes.
Fortunately, Subversion provides a suite of functions (see subver si on/ i ncl ude/ svn_ut f . h) that any program can use to
do these conversions.

Also, Subversion APIs require al URL parameters to be properly URI-encoded. So, instead of passing
file:///home/usernane/ My File.txt as the URL of a file named My File.txt, you need to pass
file:///home/ usernane/ My%20Fi | e. t xt. Again, Subversion supplies helper functions that your application can
use—svn_pat h_uri _encode() andsvn_pat h_uri _decode(), for URI encoding and decoding, respectively.

Using Languages Other Than C and C++

If you are interested in using the Subversion libraries in conjunction with something other than a C program—say, a Python or Perl
script—Subversion has some support for this via the Simplified Wrapper and Interface Generator (SWIG). The SWIG bindings for
Subversion are located in subver si on/ bi ndi ngs/ swi g. They are still maturing, but they are usable. These bindings allow
you to call Subversion API functions indirectly, using wrappers that trandate the datatypes native to your scripting language into
the datatypes needed by Subversion's C libraries.

243

Embedding Subversion

Significant efforts have been made toward creating functional SWIG-generated bindings for Python, Perl, and Ruby. To some ex-
tent, the work done preparing the SWIG interface files for these languages is reusable in efforts to generate bindings for other lan-
guages supported by SWIG (which include versions of C#, Guile, Java, MzScheme, OCaml, PHP, and Tcl, among others).
However, some extra programming is required to compensate for complex APIs that SWIG needs some help translating between
languages. For more information on SWIG itself, see the project's web site at http://www.swig.org/.

Subversion aso has language bindings for Java. The javahl bindings (located in subver si on/ bi ndi ngs/ j ava in the Subver-
sion source tree) aren't SWIG-based, but are instead a mixture of Java and hand-coded JNI. Javahl covers most Subversion client-
side APIsand is specifically targeted at implementors of Java-based Subversion clients and IDE integrations.

Subversion's language bindings tend to lack the level of developer attention given to the core Subversion modules, but can gener-
ally be trusted as production-ready. A number of scripts and applications, alternative Subversion GUI clients, and other third-party
tools are successfully using Subversion's language bindings today to accomplish their Subversion integrations.

It's worth noting here that there are other options for interfacing with Subversion using other languages: alternative bindings for
Subversion that aren't provided by the Subversion development community at all. There are a couple of popular ones we feel are
especially noteworthy. First, Barry Scott's PySVN bindings (http://pysvn.tigris.org/) are a popular option for binding with Python.
PySVN boasts of a more Pythonic interface than the more C-like APIs provided by Subversion's own Python bindings. And if
you're looking for a pure Java implementation of Subversion, check out SVNKit (http://svnkit.com/), which is Subversion rewritten
from the ground up in Java.

SVNKit Versus javahl

In 2005, a small company called TMate announced the 1.0.0 release of JavaSVN—a pure Java implementation of Subver-
sion. Since then, the project has been renamed to SVNK:it (available at http://svnkit.com/) and has seen great success as a
provider of Subversion functionality to various Subversion clients, IDE integrations, and other third-party tools.

The SVNKit library is interesting in that, unlike the javahl library, it is not merely a wrapper around the official Subversion
core libraries. In fact, it shares no code with Subversion at all. But while it is easy to confuse SVNKit with javahl, and easier
still to not even realize which of these libraries you are using, folks should be aware that SVNKit differs from javahl in some
significant ways. First, while SVNKit is developed as open source software just like Subversion, SVNKit's license is more
restrictive than that of Subversion.” Finally, by aiming to be a pure Java Subversion library, SVNKit is limited in which por-
tions of Subversion can be reasonably cloned while still keeping up with Subversion's releases. This has already happened
once—SVNKit cannot access BDB-backed Subversion repositories viathefi | e: // protocol because there's no pure Java
implementation of Berkeley DB that is file-format-compatible with the native implementation of that library.

That said, SVNK:it has awell-established track record of reliability. And a pure Java solution is much more robust in the face
of programming errors—a bug in SVNKit might raise a catchable Java Exception, but a bug in the Subversion core libraries
as accessed via javahl can bring down your entire Java Runtime Environment. So, weigh the costs when choosing a Java-
based Subversion implementation.

Code Samples

Example 8.1, “Using the repository layer” contains a code segment (written in C) that illustrates some of the concepts we've been
discussing. It uses both the repository and filesystem interfaces (as can be determined by the prefixes svn_repos_ and
svn_fs_ of the function names, respectively) to create a new revision in which a directory is added. Y ou can see the use of an
APR pool, which is passed around for memory allocation purposes. Also, the code reveals a somewhat obscure fact about Subver-
sion error handling—all Subversion errors must be explicitly handled to avoid memory leakage (and in some cases, application
failure).

Example 8.1. Using the repository layer

SRedistributions in any form must be accompanied by information on how to obtain complete source code for the software that uses SVNKit and any accompa-
nying software that uses the software that uses SVNKit. See http://svnkit.com/license.html for details.

244

http://www.swig.org/
http://pysvn.tigris.org/
http://svnkit.com/
http://svnkit.com/
http://svnkit.com/license.html

Embedding Subversion

/* Convert a Subversion error into a sinple boolean error code.
*

* NOTE: Subversion errors nust be cleared (using svn_error_clear())

* because they are allocated fromthe gl obal pool, else nmenory
* | eaki ng occurs.
*/
#define | NT_ERR(expr) \
do { \
svn_error_t * tenperr = (expr); \
if (__tenperr) \
{ \
svn_error_clear(__tenperr); \
return 1; \
\
return O; \
} while (0)

Create a new directory at the path NEW DI RECTORY in the Subversion
repository |ocated at REPOS PATH. Performall menory allocation in
POOL. This function will create a new revision for the addition of
NEW DI RECTORY. Return zero if the operation conpletes

* successfully, nonzero ot herwi se.

*/
static int
make new di rectory(const char *repos_path,
const char *new directory,
apr _pool _t *pool)

* F * X

svn_error_t *err;
svn_repos_t *repos;
svn_fs t *fs;
svn_revnum<t youngest _rev;
svn_fs txn_t *txn;

svn_fs root _t *txn_root;
const char *conflict_str;

/* Open the repository |ocated at REPOS_PATH.
*/
I NT_ERR(svn_repos_open(& epos, repos_path, pool));

/* Get a pointer to the filesystemobject that is stored i n REPCS.
*/
fs = svn_repos_fs(repos);

/* Ask the filesystemto tell us the youngest revision that
* currently exists.
*/

I NT_ERR(svn_fs_youngest_rev(&oungest _rev, fs, pool));

/* Begin a new transaction that is based on YOUNGEST_REV. W are

* less likely to have our later comit rejected as conflicting if we

* always try to nmake our changes agai nst a copy of the |atest snapshot

*/of the filesystemtree.

*

I NT_ERR(svn_repos_fs begin_txn for_conmit2(& xn, repos, youngest rev,
apr _hash_nake(pool), pool));

/* Now that we have started a new Subversion transaction, get a root

* object that represents that transaction.
*/

I NT_ERR(svn_fs_txn_root (& xn_root, txn, pool));

/* Create our new directory under the transaction root, at the path

245

Embedding Subversion

* NEW DI RECTORY.

*/

I NT_ERR(svn_fs_make_dir(txn_root, new directory, pool));

/* Conmit the transaction, creating a new revision of the filesystem
* whi ch includes our added directory path.
*/
err = svn_repos_fs commit_txn(&onflict_str, repos,
&oungest rev, txn, pool);
if (! err)

/* No error? Excellent! Print a brief report of our success.
*/
printf("Directory '%"' was successfully added as new revision
"o d .\n", new. directory, youngest_rev);

}
else if (err->apr_err == SYN_ERR FS_CONFLI CT)

/* Uh-oh. Qur commit failed as the result of a conflict

* (someone el se seens to have nmade changes to the sane area

* of the filesystemthat we tried to nodify). Print an error

* message.

*/

printf("A conflict occurred at path '%' while attenpting "
"to add directory '%' to the repository at '%'.\n",
conflict_str, new. directory, repos_path);

}

el se

/* Sonme other error has occurred. Print an error nessage.

*/

printf("An error occurred while attenpting to add directory ' %'
"to the repository at '%'.\n",
new di rectory, repos_path);

}
I NT_ERR(err);

Note that in Example 8.1, “Using the repository layer”, the code could just as easily have committed the transaction using
svn_fs_conmit_txn(). But the filesystem API knows nothing about the repository library's hook mechanism. If you want
your Subversion repository to automatically perform some set of non-Subversion tasks every time you commit a transaction (e.g.,
sending an email that describes all the changes made in that transaction to your developer mailing list), you need to use thel i bs-
vn_repos-wrapped version of that function, which adds the hook triggering functionality—in this case,
svn_repos_fs commit_txn(). (For more information regarding Subversion's repository hooks, see the section called
“Implementing Repository Hooks'.)

Now let's switch languages. Example 8.2, “Using the repository layer with Python” is a sample program that uses Subversion's
SWIG Python bindings to recursively crawl the youngest repository revision, and to print the various paths reached during the
crawl.

Example 8.2. Using the repository layer with Python

#! [usr/ bi n/ pyt hon

"""Crawl a repository, printing versioned object path nanes.

246

Embedding Subversion

i mport sys
i mport os.path
i mport svn.fs, svn.core, svn.repos

def crawl _filesystemdir(root, directory):
"""Recursively crawml DI RECTORY under ROOT in the filesystem and return
alist of all the paths at or bel ow DI RECTCRY. """

Print the nane of this path.
print directory + "/"

CGet the directory entries for DI RECTORY.
entries = svn.fs.svn_fs dir_entries(root, directory)

Loop over the entries.

nanes = entries. keys()

for nane in nanes:
Calculate the entry's full path.
full _path = directory + '/' + nane

If the entry is a directory, recurse. The recursion will return
alist with the entry and all its children, which we will add to
our running list of paths.
if svn.fs.svn_fs_ is dir(root, full _path):

craw filesystemdir(root, full _path)
el se:

Else it's a file, so print its path here.

print full_path

def craw _youngest (repos_path):
"""COpen the repository at REPOS PATH, and recursively craw its
youngest revision."""

Open the repository at REPOS PATH, and get a reference to its
versioning filesystem

repos_obj = svn.repos.svn_repos_open(repos_pat h)

fs_obj = svn.repos.svn_repos_fs(repos_obj)

Query the current youngest revision.
youngest _rev = svn.fs.svn_fs_youngest _rev(fs_obj)

Open a root object representing the youngest (HEAD) revision.
root_obj = svn.fs.svn fs revision_root(fs_obj, youngest rev)

Do the recursive craw .
crawl _filesystemdir(root_obj, "")
if nanme_ =" min__":
Check for sane usage.
if len(sys.argv) != 2:
sys.stderr.wite("Usage: % REPOS_PATH n"
% (0s. pat h. basenane(sys. argv[0])))
sys.exit(1)

Canonicalize the repository path.
repos_path = svn.core.svn_dirent_canonicalize(sys.argv[1])

Do the real work.
crawl _youngest (repos_pat h)

This same program in C would need to deal with APR's memory pool system. But Python handles memory usage automatically,
and Subversion's Python bindings adhere to that convention. In C, you'd be working with custom datatypes (such as those provided

247

Embedding Subversion

by the APR library) for representing the hash of entries and the list of paths, but Python has hashes (called “dictionaries’) and lists
as built-in datatypes, and it provides a rich collection of functions for operating on those types. So SWIG (with the help of some
customizations in Subversion's language bindings layer) takes care of mapping those custom datatypes into the native datatypes of
the target language. This provides amore intuitive interface for users of that language.

The Subversion Python bindings can be used for working copy operations, too. In the previous section of this chapter, we men-
tioned thel i bsvn_cl i ent interface and how it exists for the sole purpose of simplifying the process of writing a Subversion
client. Example 8.3, “A Python status crawler” is a brief example of how that library can be accessed via the SWIG Python bind-
ingsto re-create a scaled-down version of the svn status command.

Example 8.3. A Python status crawler

#!/ usr/ bin/env python

"""Crawm a working copy directory, printing status information.

i mport sys

i mport os.path

i mport getopt

i mport svn.core, svn.client, svn.wc

def generate_status_code(status):
"""Transl ate a status value into a single-character status code,
using the sanme | ogic as the Subversion com’rand line client.”""

code_map = { svn.wc.svn_wc_status_none R
svn. we. svn_wec_st at us_nor nal B
svn. we. svn_wc_status_added A
svn. we. svn_wc_st at us_mi ssi ng Yy
svn.wc. svn_we_status_i nconpl ete B
svn.we. svn_we_stat us_del et ed 'D,
svn.we. svn_we_status_repl aced 'R,
svn.we. svn_we_status_nodified "M,
svn.wc. svh_wc_status_conflicted 'C,
svn. we. svn_wc_status_obstruct ed B
svn. wc. svn_wc_status_ignored B
svn. wc. svn_wc_st at us_ext er nal "X,
svn.wc. svn_wc_status_unversioned : '?',

return code_nmap. get (status, '?")

def do_status(wc_path, verbose, prefix):
Build a client context baton.
ctx = svn.client.svn_client _create_context()

def _status_call back(path, status):
"""A call back function for svn_client_status."""
Print the path, mnus the bit that overlaps with the root of
the status craw
text _status gener ate_st at us_code(status.text_status)
prop_status gener at e_st at us_code(st at us. prop_st at us)
prefix_text "
if prefix is not None:
prefix_text = prefix +
print '%%% %' % (prefix_text, text_status, prop_status, path)

Do the status crawl, using _status_call back() as our callback function
revision = svn.core.svn_opt_revision_t()

revision.type = svn.core.svn_opt _revision_head
svn.client.svn_client_status2(wc_path, revision, _status_callback

248

Embedding Subversion

svn.core.svn_depth_infinity, verbose,
0, 0, 1, ctx)

def usage_and_exit (errorcode):
"""Print usage nessage, and exit w th ERRORCODE. """
stream = errorcode and sys.stderr or sys.stdout
streamwite("""Usage: % OPTI ONS WC- PATH

Print working copy status, optionally with a bit of prefix text.

Opt i ons:
--help, -h : Show this usage message
--prefix ARG : Print ARG followed by a space, before each |line of output
--verbose, -v : Show all statuses, even uninteresting ones
""" 0 (0s. pat h. basenane(sys.argv[0])))
sys. exit(errorcode)

if nane_ =="'_main__"':
Parse comuand-|ine options.
try:
opts, args = getopt.getopt(sys.argv[1l:], "hv",
["hel p*, "prefix=", "verbose"])
except getopt. CGetoptError:
usage_and_exit (1)
verbose = 0
prefix = None
for opt, arg in opts:
if opt in ("-h", "--help"):
usage_and_exit (0)
if opt in ("--prefix"):
prefix = arg
if opt in ("-v", "--verbose"):
verbose = 1
if len(args) !'= 1:

usage_and_exit(2)

Canoni cal i ze the worki ng copy path.
wc_path = svn. core.svn_dirent_canonicalize(args[0])

Do the real work.

try:
do_status(wc_path, verbose, prefix)

except svn. core. Subversi onException, e:
sys.stderr.wite("Error (%): %\n" % (e.apr_err, e.nessage))
sys.exit(1)

As was the case in Example 8.2, “Using the repository layer with Python”, this program is pool-free and uses, for the most part,
normal Python datatypes.

Run user-provided paths through the appropriate canonicalization function (svn_di r ent _canoni cal i ze() or
svn_uri _canoni cal i ze()) before passing them to other API functions. Failure to do so can trigger assertions
in the underlying Subversion C library which translate into rather immediate and unceremonious program abortion.

Of particular interest to users of the Python flavor of Subversion's API is the implementation of callback functions. As previously
mentioned, Subversion's C APl makes liberal use of the callback function/baton paradigm. API functions which in C accept afunc-
tion and baton pair only accept a callback function parameter in Python. How, then, does the caller pass arbitrary context informa-
tion to the callback function? In Python, this is done by taking advantage of Python's scoping rules and default argument values.
You can see thisin action in Example 8.3, “A Python status crawler”. Thesvn_cl i ent _st at us2() function is given a call-
back function (_st at us_cal | back()) but no baton—_st at us_cal | back() gets access to the user-provided prefix string

249

Embedding Subversion

because that variable falls into the scope of the function automatically.

Summary

One of Subversion's greatest features isn't something you get from running its command-line client or other tools. It's the fact that
Subversion was designed modularly and provides a stable, public APl so that others—like yourself, perhaps—can write custom
software that drives Subversion's core logic.

In this chapter, we took a closer look at Subversion's architecture, examining its logical layers and describing that public API, the
very same API that Subversion's own layers use to communicate with each other. Many developers have found interesting uses for
the Subversion API, from simple repository hook scripts, to integrations between Subversion and some other application, to com-
pletely different version control systems. What unique itch will you scratch with it?

250

Chapter 9. Subversion Complete Reference

This chapter is intended to be a complete reference to using Subversion. It includes command summaries and examples for al the
command-line tools provided as part of the stock Subversion distribution, configuration information for the Subversion server
modules, and other information that lends itself to a reference format.

svn—Subversion Command-Line Client

svn is the official command-line client of Subversion. Its functionality is offered via a collection of task-specific subcommands,
most of which accept a number of options for fine-grained control of the program'’s behavior.

When using the svn program, subcommands and other non-option arguments must appear in a specified order on the command
line. Options, on the other hand, may appear anywhere on the command line (after the program name, of course), and in general,
their order isirrelevant. For example, al of the following are valid ways to use svn status, and are interpreted in exactly the same

way:

svn -vq status nyfi
svn status -v -q ny
svn -q status -v ny
svn status -vq nyfi
svn status nyfile -

AAAPAP

The following sections describe each of the various subcommands and options provided by the svn command-line client program,
including some examples of each subcommand's typical uses.

svn Options

While Subversion has different options for its subcommands, all options exist in a single namespace—that is, each option is guar-
anteed to mean the roughly same thing regardless of the subcommand you use it with. For example, - - ver bose (- v) always
means “verbose output,” regardless of the subcommand you use it with.

The svn command-line client usually exits quickly with an error if you pass it an option which does not apply to the specified sub-
command. But as of Subversion 1.5, severa of the options which apply to al—or nearly all—of the subcommands have been
deemed acceptable by all subcommands, even if they have no effect on some of them. (This change was made primarily to improve
the client's ability to called from custom wrapping scripts.) These options appear grouped together in the command-line client's us-
age messages as global options, as can be seen in the following bit of output:

$ svn hel p upgrade
upgrade: Upgrade the netadata storage format for a working copy.
usage: upgrade [WCPATH. . .]

Local nodifications are preserved.

Valid options:
-q [--quiet] : print nothing, or only summary information

d obal options:

--usernanme ARG
--password ARG
--no- aut h- cache
--non-interactive

specify a usernanme ARG

specify a password ARG

do not cache authentication tokens
do no interactive pronpting

251

Subversion Complete Reference

--trust-server-cert . accept SSL server certificates from unknown
certificate authorities wi thout pronpting (but only
with '--non-interactive')

--config-dir ARG : read user configuration files fromdirectory ARG

--config-option ARG : set user configuration option in the fornmat:

FI LE: SECTI ON: OPTI ON=[VALUE]
For exanpl e:
servers: global :http-1library=serf

svn subcommands recognize the following global options:

--config-dir DR
Instructs Subversion to read configuration information from the specified directory instead of the default location
(. subver si on inthe user's home directory).

--config-opti on CONFSPEC

Sets, for the duration of the command, the value of a runtime configuration option. CONFSPEC is a string which specifies the
configuration option namespace, hame and value that you'd like to assign, formatted as FI LE:SECTI ON:OPTI ON=[VVALUE].
In this syntax, FI LE and SECTI ON are the runtime configuration file (either conf i g or ser ver s) and the section thereof,
respectively, which contain the option whose value you wish to change. OPTI ONis, of course, the option itself, and VALUE
the value (if any) you wish to assign to the option. For example, to temporarily disable the use of the automatic property set-
ting feature, use - - confi g- opti on=confi g: m scel | any: enabl e- aut o- pr ops=no. You can use this option
multiple times to change multiple option values simultaneously.

--no-aut h-cache
Prevents caching of authentication information (e.g., username and password) in the Subversion runtime configuration direct-
ories.

--non-interactive
Disables all interactive prompting. Some examples of interactive prompting include requests for authentication credentials and
conflict resolution decisions. Thisis useful if you're running Subversion inside an automated script and it's more appropriate to
have Subversion fail than to prompt for more information.

- - passwor d PASSWD
Specifies the password to use when authenticating against a Subversion server. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

--trust-server-cert
When used with - - non-i nt er acti ve, instructs Subversion to accept SSL server certificates issued by unknown certific-
ate authorities without first prompting the user. For security's sake, you should use this option only when the integrity of the
remote server and the network path between it and your client is known to be trustworthy.

- - user name NAME
Specifies the username to use when authenticating against a Subversion server. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

Therest of the options apply and are accepted by only a subset of the subcommand. They are asfollows:

--accept ACTI ON
Specifies an action for automatic conflict resolution, disabling the interactive prompts which ask the user how to handle each
conflict asit is noticed. Though which of the specific actions are applicable differs depending on which subcommand isin use,
Subversion supports the following long (and short) values for ACTI ON:

252

Subversion Complete Reference

post pone (p)
Take no resolution action at all and instead allow the conflicts to be recorded for future resolution.

edit (e)
Open each conflicted file in atext editor for manual resolution of line-based conflicts.

 aunch (1)
Launch an interactive merge conflict resolution tool for each conflicted file.

base
Choose the file that was the (unmodified) BASE revision before you tried to integrate changes from the server into your work-

ing copy.

wor ki ng
Assuming that you've manually handled the conflict resolution, choose the version of the file as it currently stands in your
working copy.

m ne-ful | (nf)
Resolve conflicted files by preserving al local modifications and discarding all changes fetched from the server during the op-
eration which caused the conflict.

theirs-full (tf)
Resolve conflicted files by discarding all local modifications and integrating all changes fetched from the server during the op-
eration which caused the conflict.

m ne-conflict (nc)
Resolve conflicted files by preferring local modifications over the changes fetched from the server in conflicting regions of
each file's content.

theirs-conflict (tc)
Resolve conflicted files by preferring the changes fetched from the server over local modifications in conflicting regions of
each file's content.

Consult the output of svn help SUBCOMMAND to see exactly which actions are supported by the specific subcommand of in-
terest.

--al |l ow m xed-revi sions
Disables the verification—performed by default by svn merge as of Subversion 1.7—that the target of a merge operation and
all of its children are at a uniform revision. While merging into a single-revision working copy target is the recommended best
practice, this option may be used to permit merges into mixed-revision working copies as necessary.

- -aut o- props
Enables automatic property assignment (per runtime configuration rules), overriding the enabl e- aut o- pr ops runtime
configuration directive.

- -change (- ¢) ARG
Perform the requested operation using a specific “change’. Generally speaking, this option is syntactic sugar for -r
ARG 1: ARG, Some subcommands permit a comma-separated list of revison number arguments (eg., -cC
ARGL, AR&, ARG3). Alternatively, you can provide two arguments separated by adash (asin- ¢ ARGL- ARR) to identify
the range of revisions between ARGL and ARG2, inclusive. Finally, if the revision argument is negated, the implied revision
rangeisreversed: - ¢ -45isequivaentto-r 45: 44.

--changel i st (--cl) ARG
Instructs Subversion to operate only on members of the changelist named ARG. Y ou can use this option multiple times to spe-
cify sets of changelists.

--dept h ARG
Instructs Subversion to limit the scope of an operation to a particular tree depth. ARGis one of enpt y (only the target itself),
fil es (thetarget and any immediate file children thereof), i mredi at es (the target and any immediate children thereof), or

253

Subversion Complete Reference

i nfinity (thetarget and al of its descendants—full recursion).

--diff
Enables a specia output mode for svn log which includes a difference report (a la svn diff) as part of each revision's informa-
tion.

--diff-cnmd CMD
Specifies an externa program to use to show differences between files. When svn diff is invoked without this option, it uses
Subversion's internal differencing engine, which provides unified diffs by default. If you want to use an external differencing
program, use- - di f f - crd. Y ou can then pass options to the specified program using the - - ext ensi ons (- x) option.

--di ff3-cnd CVD
Specifies an external 3-way differencing program (used to merge line-based changes into files).

--dry-run
Goes through al the motions of running acommand, but makes no actual changes—either on disk or in the repository.

--editor-cnd CVD
Specifies an external program to use to edit a log message or a property value. See the edi t or - cnd section in the section
called “Config” for ways to specify a default editor.

--encodi ng ENC
Tells Subversion that your commit message is composed using the character encoding provided. The default character encod-
ing is derived from your operating system'’s native locale; use this option if your commit message is composed using any other
encoding.

- - ext ensi ons (- x) ARG
Specifies customizations which Subversion should make when performing difference calculations. Valid extensions include:

--i gnor e- space- change (- b)
Ignore changes in the amount of white space.

--ignore-all-space (-w
Ignore all white space.

--ignore-eol -style
Ignore changesin EOL (end-of-line) style.

--show c-function(-p)
Show C function namesin the diff output.

--unified(-u)
Show three lines of unified diff context.

The default value of ARGis - u. If you wish to pass multiple arguments, you must enclose all of them in quotes.

Note that when Subversion is configured to invoke an external diff command, the value of the - - ext ensi on (- x) option
isn't restricted to the previously mentioned options, but may be any additional arguments which Subversion should pass to that
command.

--file(-F)FI LENAME
Uses the contents of the named file for the specified subcommand. Different subcommands do different things with this con-
tent. For example, svn commit uses the content as a commit log message, whereas svn propset uses it as a property value.

--force
Forces a particular command or operation to run. Subversion will prevent you from performing some operations in normal us-
age, but you can pass this option to tell Subversion “I know what I'm doing as well as the possible repercussions of doing it, so
let me at 'em.” This option is the programmatic equivalent of doing your own electrical work with the power on—if you don't
know what you're doing, you're likely to get a nasty shock.

254

Subversion Complete Reference

--force-1og
Forces a suspicious parameter passed to the - - nessage (- or --fi |l e (- F) option to be accepted as valid. By default,
Subversion will produce an error if parameters to these options look like they might instead be targets of the subcommand. For
example, if you pass a versioned file's path to the- - f i | e (- F) option, Subversion will assume you've made a mistake, that
the path was instead intended as the target of the operation, and that you simply failed to provide some oth-
er—unversioned—file as the source of your log message. To assert your intent and override these types of errors, pass the -
- f or ce- | og option to subcommands that accept |og messages.

--git
Enables a special output mode for svn diff designed for cross-compatibility with the popular Git distributed version control
system.

--help(-h,-?)
If used with one or more subcommands, shows the built-in help text for each. If used alone, it displays the general client help
text.

--ignore-ancestry
Tells Subversion to ignore ancestry when calculating differences (rely on path contents alone). Also disables Merge Tracking
when used with the svn mer ge subcommand.

--ignore-externals
Tells Subversion to ignore external s definitions and the external working copies managed by them.

--i gnor e- keywor ds
Disables keyword expansion.

--ignore-whitespace
Instructs svn patch to ignore whitespace when attempting to identify patch context.

--increnental
Prints output in aformat suitable for concatenation to prior similar output.

--internal -diff
Instructs Subversion to use its built-in differencing engine despite any external differencing mechanism that may be specified
for usein the user's runtime configuration.

- - keep-changel i sts
Tells Subversion not to remove the changelist assigments from working copy items after committing.

- -keep- I ocal
Keepsthelocal copy of afile or directory (used with the svn delete command).

--limt (-1)NUM
Shows only the first NUMIog messages.

- -message (- n) MESSACE
Indicates that you will specify either alog message or a lock comment on the command line, following this option. For ex-
ample:

$ svn commit -m " They don't nake Sunday."

--native-eol ARG
Causes svn export to use a specific end-of-line sequence as if it was the native sequence for the client platform. ARG may be
oneof CR, LF, or CRLF.

255

Subversion Complete Reference

- - newARG
Uses ARG as the newer target (for use with svn diff).

- - no- aut o- props
Disables automatic property setting, overriding the enabl e- aut o- pr ops runtime configuration directive.

--no-di ff-del eted
Prevents Subversion from printing differences for deleted files. The default behavior when you remove afile is for svn diff to
print the same differences that you would see if you had kept the file but removed all of its content.

--no-ignore
Shows files in the status listing that would normally be omitted since they match a pattern in the gl obal - i gnor es config-
uration option or the svn: i gnor e property. See the section called “Config” and the section called “Ignoring Unversioned
Items” for more information.

- - no- unl ock
Tells Subversion not to automatically unlock files. (The default commit behavior isto unlock all fileslisted as part of the com-
mit.) See the section called “Locking” for more information.

--non-recursive (-N)
Deprecated. Stops a subcommand from recursing into subdirectories. Most subcommands recurse by default, but some do not.
Users should avoid this option and use the more precise - - dept h option instead. For most subcommands, specifying -
- non-r ecur si ve produces behavior which is the same as if you'd specified - - dept h=f i | es, but there are exceptions:
non-recursive svn status operates at the i nmedi at es depth, and the non-recursive forms of svn revert, svn add, and svn
commit operate at an enpt y depth.

--notice-ancestry
Pays attention to ancestry when calculating differences.

--ol d ARG
Uses ARG as the older target (for use with svn diff).

--parents
Creates and adds nonexistent or nonversioned parent subdirectories to the working copy or repository as part of an operation.
Thisisuseful for automatically creating multiple subdirectories where none currently exist. If performed on a URL, all the dir-
ectories will be created in a single commit.

--quiet (-q)
Requests that the client print only essential information while performing an operation.

--record-only
Enables a special mode of svn merge in which the specified merge operation is recorded in the local merge tracking informa-
tion, but is not actually performed.

--recursive (-R)
Makes a subcommand recurse into subdirectories. (Most subcommands recurse by default.)

--reintegrate
Used with the svn mer ge subcommand to merge all of the source URL's changes into the working copy. See the section called
“Keeping aBranchin Sync” for details.

--relocate
Deprecated. When used with the svn switch subcommand, changes the location of the repository that your working copy refer-
ences. The preferred approach as of Subversion 1.7, however, is to use the svn relocate subcommand. See svn relocate for
more details and an example.

--renove
Used with svn changelist to disassociate—rather than associate (which is the default operation)—the target(s) from a changel-
ist.

256

Subversion Complete Reference

--reverse-di ff
Causes svn patch to interpret the input patch instructions in reverse—treating added lines as removed ones and vice-versa.

--revision(-r) REV
Specifies a revision (or range of revisions) on with which to operate. Y ou can provide revision numbers, keywords, or dates
(in curly braces) as arguments to the revision option. If you wish to offer a range of revisions, you can provide two revisions
separated by a colon. For example:

svn log -r 1729

svn log -r 1729: HEAD

svn log -r 1729:1744

svn log -r {2001-12-04}:{2002-02-17}
svn log -r 1729:{2002-02-17}

PAPAAPH

See the section called “ Revision Keywords’ for more information.

--revprop
Operates on arevision property instead of a property specific to afile or directory. This option requires that you also pass are-
vision with the- - r evi si on (- r) option.

--set-depth ARG
Sets the sticky depth on a directory in a working copy to one of excl ude, enpty,files,i medi ates,orinfinity.
For detailed coverage of what these mean and how to use this option, see the section called “ Sparse Directories’.

- -show copi es- as- adds
Enables a special output mode for svn diff in which the content difference for afile created via a copy operation appears as it
would for a brand new file (with each line therein appearing as an addition to an empty file) rather than as a delta against the
original file from which the copy was created.

- -show revs ARG
Used to make svn mergeinfo display certain classes of merge tracking information. ARG may be either nerged or el i -
gi bl e, indicating a desire to see revisions either already merged or eligible for future merge from the specified source URL,
respectively.

- - show updat es (- u)
Causes the client to display information about which files in your working copy are out of date. This doesn't actually update
any of your files—it just shows you which files will be updated if you then use svn update.

- - st op- on- copy
Causes a Subversion subcommand that traverses the history of a versioned resource to stop harvesting that historical informa-
tion when a copy—that is, alocation in history where that resource was copied from another location in the repository—is en-
countered.

--strict
Causes Subversion to use strict semantics, a notion that is rather vague unless talking about specific subcommands (namely,
svn propget).

--stripNUM
Used by svn patch to ignore NUMleading path components found on paths specified in the patch input file.

--sumari ze
Display only high-level summary notifications about the operation instead of its detailed output.

--targets FI LENAME
Tells Subversion to read additiona target paths for the operation from FI LENAME. FI LENAME should contain one path per

257

Subversion Complete Reference

line, with each path expected to use the same encoding and formatting that it would if you had specified it directly as an argu-
ment on the command line.

--use-nmerge-history (-9)
Uses or displays additional information from merge history.

--verbose (-v)
Requests that the client print out as much information as it can while running any subcommand. This may result in Subversion
printing out additional fields, detailed information about every file, or additional information regarding its actions.

--version
Prints the client version info. This information includes not only the version number of the client, but also alisting of all repos-
itory access modules that the client can use to access a Subversion repository. With - - qui et (- q) it prints only the version
number in a compact form.

--with-all-revprops
Used with the - - xm option to svn log, instructs Subversion to retrieve and display al revision properties—the standard ones
used internally by Subversion as well as any user-defined ones—in the log output.

--wW t h-no-revprops
Used with the - - xm option to svn log, instructs Subversion to omit al revision properties—including the standard log mes-
sage, author, and revision datestamp—from the log outpuit.

--with-revprop ARG
When used with any command that writes to the repository, sets the revision property, using the NAME=VAL UE format, NAME
to VALUE. When used with svn login - - xml mode, this displays the value of ARGin the log output.

--xm
Prints output in XML format.

svn Subcommands

Here are the various subcommands for the svn program. For the sake of brevity, we omit the global options (described in the sec-
tion called “svn Options”) from the subcommand descriptions which follow.

258

Subversion Complete Reference

Name

svn add — Add files, directories, or symbolic links.

Synopsis
svn add PATH...
Description

Schedule files, directories, or symbolic links in your working copy for addition to the repository. They will be uploaded and added
to the repository on your next commit. If you add something and change your mind before committing, you can unschedule the ad-
dition using svn revert.

Options

- - aut o- props
--depth ARG
--force

- - no- aut o- props
--no-ignore
--parents

--quiet (-q)
--targets FILENAVE

Examples

To add afile to your working copy:

$ svn add foo.c
A foo.c

When adding a directory, the default behavior of svn add isto recurse:

$ svn add testdi
A t est di
A t est di
A t est di
A t est di
A t est di

—_— o = = =

~——
oOOTQ

Y ou can add a directory without adding its contents:

$ svn add --depth=enpty otherdir
A ot herdir

259

Subversion Complete Reference

Attempts to schedule the addition of an item which is aready versioned will fail by default. This behavior foils the most common
scenario under which users attempt this: when trying to get to Subversion to recursively examine a versioned directory and add any
unversioned items inside of it. To override the default behavior and force Subversion to recurse into already-versioned directories,
passthe- - f or ce option:

$ svn add versioned-dir

svn: warni ng: WL50002: '/hone/cnpil ato/ projects/subversion/site' is already un\
der version control

$ svn add versioned-dir --force

A versioned-dir/foo.c

A versi oned-dir/sonmedir/bar.c

A (bin) versioned-dir/otherdir/docs/baz.doc

260

Subversion Complete Reference

Name

svn blame (praise, annotate, ann) — Show author and revision information inline for the specified files or URLSs.

Synopsis
svn bl ame TARGET[@REV] . ..
Description

Show author and revision information inline for the specified files or URLSs. Each line of text is annotated at the beginning with the
author (username) and the revision number for the last change to that line.

Options

--extensions (-x) ARG
--force

--increnental

--revision (-r) REV
--use-nmerge-history (-9)
--verbose (-v)

- - xm

Examples

If you want to see blame-annotated source for r eadmne. t xt in your test repository:

$ svn blame http://svn.red-bean. com repos/test/readne.txt

3 sally This is a README file.
5 harry Don't bother reading it. The boss is a knuckl ehead.
3 sally

Now, just because svn blame says that Harry last modified r eadn®e. t xt in revision 5, understand that this subcommand is by
default very picky about what constitutes a change. Before clubbing Harry over the head for what appears to be insubordination,
first consider that perhaps the change he made to the file might have been only to its specific character content, not to its overall se-
mantic meaning. Perhaps his changes were the result of blindly running a whitespace cleanup script on this file. Y ou might need to
examine the specific differences and related log message to understand exactly what Harry did to thisfilein revision 5.

$ svn log -c 5 http://svn.red-bean.conlrepos/test/readne. txt

r5 | harry | 2008-05-29 07:26:12 -0600 (Thu, 29 May 2008) | 1 line

Commit the results of 'doubl e-space-after-period.sh'.

$ svn diff -c 5 http://svn.red-bean.conlrepos/test/readne. txt
I ndex: http://svn.red-bean.conirepos/test/readne.txt

--- http://svn.red-bean.com repos/test/readne.txt (revision 4)

261

Subversion Complete Reference

+++ http://svn.red-bean. confrepos/test/readne.txt (revision 5)
@-1,5 +1,5 @@

This is a READMVE file.

-Don't bother reading it. The boss is a knuckl ehead.

+Don't bother reading it. The boss is a knuckl ehead.

I NSTRUCTI ONS

Sure enough, Harry only changed the whitespace in that line. Fortunately, the - - ext ensi ons (- x) option can help you better
determine the last time that a meaningful change was made to a given line of text. For example, here's how you can see the annota-
tion information while disregarding mere whitespace changes.

$ svn blame -x -b http://svn.red-bean. conlrepos/test/readne. txt

3 sally This is a README file.
4 jess Don't bother reading it. The boss is a knuckl ehead.
3 sally

If you use the - - xm option, you can get XML output describing the blame annotations, but not the contents of the lines them-
selves:

$ svn blame --xm http://svn.red-bean. confrepos/test/readne. txt
<?xm version="1.0"7?>
<bl ame>
<t ar get
pat h="readne. t xt ">
<entry
i ne-nunber="1">
<conmi t
revisi on="3">
<aut hor >sal | y</ aut hor >
<dat €>2008- 05- 25T19: 12: 31. 428953Z</ dat e>
</conm t >
</entry>
<entry
[i ne- nunber="2">
<conmi t
revision="5">
<aut hor >harry</ aut hor >
<dat €>2008- 05- 29T13: 26: 12. 2931217</ dat e>
</ conmit >
</entry>
<entry
li ne-nunber="3">

2/entry>
</target>
</ bl ame>

$

262

Subversion Complete Reference

Name
svn cat — Output the contents of the specified files or URLSs.

Synopsis
svn cat TARGET[@REV]. ..
Description

Output the contents of the specified files or URLSs. For listing the contents of directories, see svn list later in this chapter.

Options
--revision (-r) REV

Examples

If you want to view r eadme. t xt inyour repository without checking it out:

$ svn cat http://svn.red-bean. conirepos/test/readne. txt
This is a READMVE file.
Don't bother reading it. The boss is a knuckl ehead.

I NSTRUCTI ONS

Step 1: Do this.
Step 2: Do that.
$

Y ou can view specific versions of files, too.

$ svn cat -r 3 http://svn.red-bean.conlrepos/test/readne.txt
This is a READVE file.

I NSTRUCTI ONS

Step 1: Do this.
Step 2: Do that.
$

Y ou might develop areflex action of using svn cat to view your working file contents. But keep in mind that the de-
/ fault peg revision for svn cat when used on aworking copy file target is BASE, the unmodified base revision of that

263

Subversion Complete Reference

file. Don't be surprised when asimplesvn cat /path/to/fil e invocation failsto display your loca modifica-
tionsto that file!

If your working copy is out of date (or you have local modifications) and you want to see the HEAD revision of afile
in your working copy, usethe- - r evi si on (- r) option: svn cat -r HEAD FI LENAME

264

Subversion Complete Reference

Name
svn changelist (cl) — Associate (or deassociate) local paths with a changelist.

Synopsis
changel i st CLNAME TARCET. ..

changel i st --renmpbve TARGET...

Description

Used for dividing filesin aworking copy into a changelist (logical named grouping) in order to allow users to easily work on mul-
tiple file collections within a single working copy.

Options

--changelist (--cl) ARG
--depth ARG

--quiet (-q)
--recursive (-R
--renove

--targets FI LENAME

Example

Edit three files, add them to a changedlist, then commit only filesin that changelist:

svn changel i st issuel729 foo.c bar.c baz.c
[issuel729] foo.c
[issuel729] bar.c
[1ssuel729] baz.c
svn status
someot herfile.c
test/sonmetest.c

Changel i st 'issuel729':
foo.c
bar.c
baz. c
$ svn comit --changelist issuel729 -m"Fixing |ssue 1729."
Addi ng bar.c
Addi ng baz. c
Addi ng foo.c
Transmitting file data ...
Conmitted revision 2.
$ svn status

>> >

A soneot herfile.c
A test/sonetest.c
$

Note that in the previous example, only the filesin changelisti ssuel729 were committed.

265

Subversion Complete Reference

Name

svn checkout (co) — Check out aworking copy from arepository.
Synopsis

svn checkout URL[@REV]... [PATH

Description

Check out aworking copy from arepository. If PATH is omitted, the basename of the URL will be used as the destination. If mul-
tiple URLs are given, each will be checked out into a subdirectory of PATH, with the name of the subdirectory being the basename
of theURL.

Options

--depth ARG
--force
--ignore-externals
--quiet (-q)
--revision (-r) REV

Examples

Check out aworking copy into adirectory called ni ne:

svn checkout file:///var/svn/repos/test mne
m ne/ a
m ne/ b
m ne/ c
m ne/ d
ked out revision 20.

PQ>>>>H

> — O

Cc
S
e

¥ 3

Check out two different directories into two separate working copies:

$ svn checkout file:///var/svn/repos/test \
file:///var/svn/repos/quiz
A test/a

A test/b

A test/c

A test/d

Checked out revision 20.
A qui z/ 1

A qui z/ m

Checked out revision 13.
$1s

qui z test

266

Subversion Complete Reference

Check out two different directoriesinto two separate working copies, but place both into a directory called wor ki ng- copi es:

$ svn checkout file:///var/svn/repos/test \
file:///var/svn/repos/quiz \
wor ki ng- copi es
wor ki ng- copi es/test/a
wor ki ng- copi es/test/b
wor ki ng- copi es/test/c
wor ki ng- copi es/test/d
ecked out revision 20.
wor ki ng- copi es/ qui z/ |
wor ki ng- copi es/ qui z/ m
Checked out revision 13.
$1s
wor ki ng- copi es

)>)>9)>J>J>J>

If you interrupt a checkout (or something else interrupts your checkout, such as loss of connectivity, etc.), you can restart it either
by issuing the identical checkout command again or by updating the incomplete working copy:

$ svn checkout file:///var/svn/repos/test mne

A m ne/ a
A m ne/ b
AC

svn: E200015: Caught si gnal

$ svn checkout file:///var/svn/repos/test mne
A nm ne/ c

~C

svn: E200015: Caught si gnal

$ svn update mine

Updating 'mne':

A m ne/d

gpdat ed to revision 20.

If you wish to check out some revision other than the most recent one, you can do so by providing the - - r evi si on (- r) option
to the svn checkout command:

$ svn checkout -r 2 file:///var/svn/repos/test mne

A m ne/ a
Checked out revision 2.
$

Prior to version 1.7, Subversion would complain by default if you try to check out adirectory atop an existing directory which con-
tains files or subdirectories that the checkout itself would have created. Subversion 1.7 handles this situation differently, allowing
the checkout to proceed but marking any obstructing objects as tree conflicts. Use the - - f or ce option to override this safeguard.
When you check out with the - - f or ce option, any unversioned file in the checkout target tree which ordinarily would obstruct

267

Subversion Complete Reference

the checkout will still become versioned, but Subversion will preserve its contents as-is. If those contents differ from the repository
file at that path (which was downloaded as part of the checkout), the file will appear to have local modifications—the changes re-
quired to transform the versioned file you checked out into the unversioned file you had before checking out—when the checkout
completes.

nkdi r project

nkdir project/lib

touch project/lib/file.c

svn checkou ile:///var/svn/repos/project/trunk project --force
proj ect/ / subdi r

project/lib/file.c
project/lib/anotherfile.c
proj ect/incl ude/ header. h

Checked out revision 21.

$ svn status wc

M project/lib/file.c

$ svn diff we

Index: project/lib/file.c

$
$ /
$ /
$ t f
E project/lib
A lib
E
A
A

--- project/lib/file.c (revision 1)

+++ project/lib/file.c (working copy)

@-3 +0,0 @@

-/* file.c: Code for acting file-ishly. */

- #i ncl ude <stdio. h>

-/* Not feeling particularly creative today. */

$

As in another other working copy, you have the choices typically available: reverting some or all of those local “modifications”’,
committing them, or continuing to modify your working copy.

This feature is especially useful for performing in-place imports of unversioned directory trees. By first importing the tree into the
repository, and then checking out new repository location atop the unversioned tree with the - - f or ce option, you effectively
transform the unversioned tree into aworking copy.

$ svn nkdir -m"Create newproject project root." \
file://var/svn/repos/ newproj ect

$ svn inport -m"Inport initial newproject codebase." newproject \
file://var/svn/repos/ newproject/trunk

Addi ng newpr oj ect/i ncl ude

Addi ng newpr oj ect/i ncl ude/ newproj ect. h
Addi ng newproject/lib

Addi ng newpr oj ect/ i b/ hel pers.c

Addi ng newpr oj ect/1i b/ base. c

Addi ng newpr oj ect/ not es

Addi ng newpr oj ect / not es/ READVE

Committed revision 22.

$ svn checkout file:// pwd /repos-1.6/newproject/trunk newproject --force
newpr oj ect/i ncl ude

E newpr oj ect/i ncl ude/ newproj ect. h

E newproject/lib

E newproj ect/1i b/ hel pers.c

E newpr oj ect/1i b/ base. c

E newpr oj ect/ not es
E
Ch

m

newpr oj ect/ not es/ READVE
ecked out revision 2.

268

Subversion Complete Reference

$ svn status newproj ect
$

269

Subversion Complete Reference

Name

svn cleanup — Recursively clean up the working copy

Synopsis
svn cl eanup [PATH...]

Description

Recursively clean up the working copy, removing working copy locks and resuming unfinished operations. If you ever get a
wor ki ng copy | ocked error, run this command to remove stale locks and get your working copy into a usable state again.

If, for some reason, an svn update fails due to a problem running an external diff program (e.g., user input or network failure),
passthe - - di f f 3- cnd to allow the cleanup process to complete any required merging using your external diff program. Y ou can

aso specify any configuration directory with the - - confi g- di r option, but you should need these options extremely infre-
quently.

Options

--di ff3-cmd CVD

Examples

WEell, there's not much to the examples here, as svn cleanup generates no output. If you pass no PATH, then “. ” is used:

$ svn cl eanup
$ svn cl eanup /var/svn/ wor ki ng- copy

270

Subversion Complete Reference

Name

svn commit (ci) — Send changes from your working copy to the repository.

Synopsis
svn conmit [PATH. ..]
Description

Send changes from your working copy to the repository. If you do not supply alog message with your commit by using either the
--file(-F)or--nessage (- m option, svn will launch your editor for you to compose a commit message. See the edi t or -
cnd list entry in the section called “ Config”.

svn commit will send any lock tokens that it finds and will release locks on all PATHs committed (recursively) unless -
- no- unl ock is passed.

If you begin a commit and Subversion launches your editor to compose the commit message, you can still abort
_} without committing your changes. If you want to cancel your commit, just quit your editor without saving your com-
mit message and Subversion will prompt you to either abort the commit, continue with no message, or edit the mes-

sage again.

Options

--changelist (--cl) ARG
--depth ARG
--editor-cnd CVD
--encodi ng ENC

--file (-F) FILENAME
--force-1og
--keep-changel i sts
--nmessage (-n) MESSAGE
--no-unl ock

--quiet (-q)

--targets FI LENAME
--with-revprop ARG

Examples

Commit a simple modification to afile with the commit message on the command line and an implicit target of your current direct-

oy (“."):

$ svn conmmit -m "added how o section."”
Sendi ng a

Transmitting file data .

Conmitted revision 3.

Commit a modification to the file f 00. ¢ (explicitly specified on the command line) with the commit message in a file named
nNsg:

271

Subversion Complete Reference

$ svn commit -F nsg foo.c
Sendi ng foo.c
Transmitting file data .
Committed revision 5.

If you want to use a file that's under version control for your commit message with --fil e (- F), you need to pass the -
-force-1 og option:

$ svn commit -F file_under_vc.txt foo.c
svn: E205004: Log nessage file is a versioned file; use '--force-log' to override

$ svn commit --force-log -F file_under_vc.txt foo.c
Sendi ng foo.c

Transmtting file data .

Comitted revision 6.

To commit afile scheduled for deletion:

$ svn commit -m "renoved file 'c'.

Del eti ng c

Committed revision 7.

272

Subversion Complete Reference

Name

svn copy (cp) — Copy afile or directory in aworking copy or in the repository.
Synopsis

svn copy SRC @REV]... DST

Description

Copy one or more filesin aworking copy or in the repository. SRC and DST can each be either aworking copy (WC) path or URL.
When copying multiple sources, add the copies asimmediate children of DST (which, of course, must be a directory).

WC #WC
Copy and schedule an item for addition (with history).

WC # URL
Immediately commit a copy of WC to URL.

URL #WC
Check out URL into WC and schedule it for addition.

URL #URL
Complete server-side copy. Thisis usually used to branch and tag.

If no peg revision (i.e., @REV) is supplied, by default the BASE revision will be used for files copied from the working copy, while
the HEAD revision will be used for files copied from a URL.

<> Y ou can only copy files within asingle repository. Subversion does not support cross-repository copying.

Options

--editor-cnd CVD
--encodi ng ENC

--file (-F) FILENAME
--force-1og
--ignore-external s
--message (-nm MESSAGE
--parents

--quiet (-q)
--revision (-r) REV
--with-revprop ARG

Examples

Copy an item within your working copy (this schedules the copy—nothing goes into the repository until you commit):

$ svn copy foo.txt bar.txt
A bar . t xt

273

Subversion Complete Reference

$ svn status
A + bar . t xt

Copy several filesin aworking copy into a subdirectory:

$ svn copy bat.c baz.c qux.c src
A src/bat.c
A src/baz.c
A src/ qux. ¢

Copy revision 8 of bat . ¢ into your working copy under a different name:

$ svn copy -r 8 bat.c ya-old-bat.c
ya-ol d-bat.c

Copy an item in your working copy to a URL in the repository (this is an immediate commit, so you must supply a commit mes-
sage):

$ svn copy near.txt file:///var/svn/repos/test/far-away.txt -m"Renote copy."

Commi tted revision 8.

Copy an item from the repository to your working copy (this just schedules the copy—nothing goes into the repository until you
commit):

$ svn copy file:///var/svn/repos/test/far-away -r 6 near-here
A near - here

o} Thisisthe recommended way to resurrect adead filein your repository!

And finally, copy between two URLS:

$ svn copy file:///var/svn/repos/test/far-away \
file://lvar/svn/repos/test/over-there -m"renote copy."

Committed revision 9.

274

Subversion Complete Reference

$ svn copy file:///var/svn/repos/test/trunk \
file:///var/svn/repos/test/tags/0.6.32-prerelease -m"tag tree"

Committed revision 12.

This is the easiest way to “tag” a revision in your repository—just svn copy that revision (usually HEAD) into your
_/J t ags directory.

And don't worry if you forgot to tag—you can always specify an older revision and tag anytime:

$ svn copy -r 11 file:///var/svn/repos/test/trunk \
file:///lvar/svn/repos/test/tags/0.6.32-prerel ease \
-m"Forgot to tag at rev 11"

Conmitted revision 13.

275

Subversion Complete Reference

Name

svn delete (del, remove, rm) — Delete an item from aworking copy or the repository.

Synopsis
svn del ete PATH. ..

svn delete URL...

Description

Items specified by PATH are scheduled for deletion upon the next commit. Files (and directories that have not been committed) are
immediately removed from the working copy unlessthe - - keep- | ocal option is given. The command will not remove any un-
versioned or modified items; usethe - - f or ce option to override this behavior.

Items specified by URL are deleted from the repository via an immediate commit. Multiple URLs are committed atomically.

Options

--editor-cnd CMVD
--encodi ng ENC

--file (-F) FILENAME
--force

--force-1og

--keep- | ocal

--message (-nm) MESSAGE
--quiet (-q)

--targets FILENAVE
--with-revprop ARG

Examples

Using svn to delete afile from your working copy deletes your local copy of the file, but it merely schedules the file to be deleted
from the repository. When you commit, the file is deleted in the repository.

$ svn delete nmyfile
D nyfile

$ svn commit -m"Deleted file "nyfile' ."
Del eti ng nyfile

Transmitting file data .
Conmitted revision 14.

Deleting a URL, however, isimmediate, so you have to supply alog message:

$ svn delete -m"Deleting file "yourfile' " \
file:///var/svn/repos/test/yourfile

Commi tted revision 15.

276

Subversion Complete Reference

Here's an example of how to force deletion of afile that has local mods:

$ svn delete over-there

svn: E195006: Use --force to override this restriction (local nodifications m
ay be | ost)

svn: E195006: '/hone/sally/project/over-there' has l|ocal nodifications -- com
mt or revert themfirst

$ svn delete --force over-there

g over-there

Usethe- - keep- | ocal option to override the default svn delete behavior of also removing the target file that was scheduled for
versioned deletion. Thisis helpful when you realize that you've accidentally committed the addition of afile that you need to keep
around in your working copy, but which shouldn't have been added to version control.

$ svn del ete --keep-1local conf/program conf
D conf/ program conf

$ svn commit -m "Renove accidentally-added configuration file."
Del eti ng conf / progr am conf

Transmitting file data .

Conmmitted revision 21.

$ svn status

; conf/ program conf

277

Subversion Complete Reference

Name

svn diff (di) — This displays the differences between two revisions or paths.

Synopsis

diff [-c M| -r N[:M] [TARGET[@REV]. . .]

diff [-r N.:M] --ol d=OLD- TGT[@LDREV] [--new=NEW TGT[@G\EWREV]] [PATH...]
di ff OLD- URL[@LDREV] NEW URL[GNEVREV]

Description

Display the differences between two paths. Y ou can use svn diff in the following ways:

» Usejust svn diff to display local modificationsin aworking copy.

 Display the changes made to TARGETSs as they are seen in REV between two revisions. TARGETSs may be al working copy paths
or al URLs. If TARGETSs are working copy paths, N defaults to BASE and Mto the working copy; if TARGETs are URLs, N must
be specified and Mdefaults to HEAD. The - ¢ Moption isequivalentto-r N: Mwhere N = M 1. Using - ¢ - Mdoes the re-
verse: -r M NwhereN = M 1.

 Display the differences between OLD- TGT as it was seen in OLDREV and NEW TGT as it was seen in NEWREV. PATHs, if giv-
en, arerelative to OLD- TGT and NEW TGT and restrict the output to differences for those paths. OLD- TGT and NEW TGT may
be working copy paths or URL[@REV] . NEW TGT defaultsto OLD- TGT if not specified. - r N makes OLDREV default to N; -
r N: Mmakes CLDREV default to N and NEWREV default to M

svn di ff OLD URL[@LDREV] NEW URL[@NEWREV] is shorthand for svn di ff --ol d=OLD- URL[@GDLDREV] -
- new=NEW URL[@GNEVIREV] .

svn diff -r N M URL isshorthandforsvn diff -r N:.M--ol d=URL --new=URL.

svn diff [-r N:M] URLL[@] URL2[@ is shorthand for svn diff [-r N:M] --old=URL1 -
-new=URL2.

If TARGET isaURL, then revs N and Mcan be given either viathe - - r evi si on (- r) option or by using the “@" notation as de-
scribed earlier.

If TARGET is aworking copy path, the default behavior (when no - - r evi si on (- r) option is provided) is to display the differ-
ences between the base and working copies of TARGET. If a--revi si on (- r) option is specified in this scenario, though, it
means.

--revision N'M
The server compares TARGET@N and TARGET@M
--revision N
The client compares TARGET @N against the working copy.
If the alternate syntax is used, the server compares URL1 and URL2 at revisions N and M respectively. If either N or Mis omitted, a
value of HEAD is assumed.

By default, svn diff ignores the ancestry of files and merely compares the contents of the two files being compared. If you use -
-not i ce-ancest ry, the ancestry of the paths in question will be taken into consideration when comparing revisions (i.e., if

278

Subversion Complete Reference

you run svn diff on two files with identical contents but different ancestry, you will see the entire contents of the file as having
been removed and added again).

Options

--change (-c) ARG
--changelist (--cl) ARG
--depth ARG
--diff-cmd CVD
--extensions (-x) ARG
--force

--git

--internal -di ff

--new ARG

--no-di ff-del eted
--notice-ancestry
--old ARG

--revision (-r) REV

- -show copi es- as- adds
--sunmari ze

--xm

Examples

Compare BASE and your working copy (one of the most popular uses of svn diff):

$ svn di ff COW TTERS
I ndex: COWM TTERS

--- COW TTERS (revision 4404)
+++ COMM TTERS (wor ki ng copy)

See what changed in the file COMM TTERS revision 9115:

$ svn diff -c 9115 COW TTERS
| ndex: COWM TTERS

--- COW TTERS (revision 3900)
+++ COW TTERS (wor ki ng copy)

See how your working copy's modifications compare against an older revision:

$ svn diff -r 3900 COW TTERS
| ndex: COWM TTERS

--- COW TTERS (revision 3900)
+++ COW TTERS (wor ki ng copy)

279

Subversion Complete Reference

Compare revision 3000 to revision 3500 using “ @” syntax:

$ svn diff http://svn.collab.net/repos/svn/trunk/ COW TTERS@000 \
http://svn.collab. net/repos/svn/trunk/ COWM TTERS@500
I ndex: COWM TTERS

--- COW TTERS (revision 3000)
+++ COW TTERS (revisi on 3500)

Compare revision 3000 to revision 3500 using range notation (pass only the one URL in this case):

$ svn diff -r 3000: 3500 http://svn.collab. net/repos/svn/trunk/COM TTERS
| ndex: COWM TTERS

--- COW TTERS (revision 3000)
+++ COW TTERS (revisi on 3500)

Compare revision 3000 to revision 3500 of all thefilesint r unk using range notation:
$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk
Compare revision 3000 to revision 3500 of only threefilesint r unk using range notation:

$ svn diff -r 3000:3500 --old http://svn.collab. net/repos/svn/trunk \
COW TTERS README HACKI NG

If you have aworking copy, you can obtain the differences without typing in the long URLS:

$ svn diff -r 3000: 3500 COW TTERS
| ndex: COWM TTERS

--- COW TTERS (revision 3000)
+++ COW TTERS (revisi on 3500)

Use--diff-cnd CVMD- - ext ensi ons (- x) to pass arguments directly to the external diff program:

280

Subversion Complete Reference

$ svn diff --diff-cnd /usr/bin/diff -x "-i -b" COW TTERS
| ndex: COWM TTERS

Oal, 2

> This is a test

>

$

Lastly, you can use the - - xnl option along with the - - summar i ze option to view XML describing the changes that occurred
between revisions, but not the contents of the diff itself:

$ svn diff --summarize --xm http://svn.red-bean.conrepos/test@2 \
http://svn. red-bean. com r epos/t est
<?xm version="1.0"?>

<di ff>

<pat hs>

<pat h
props="none"
ki nd="file"

iten¥"nodified">http://svn.red-bean. com repos/test/sandw ch.txt</path>
<pat h

pr ops="none"

kind="file"

item="del eted">http://svn.red-bean.conlrepos/test/burrito.txt</path>
<pat h

props="none"

ki nd="dir"

i tem"added" >http://svn. red-bean. com repos/test/snacks</pat h>
</ pat hs>
</diff>

281

Subversion Complete Reference

Name

svn export — Export a clean directory tree.

Synopsis
svn export [-r REV] URL[@PEGREV] [PATH
svn export [-r REV] PATHL[@EGREV] [PATH2]

Description

The first form exports a clean directory tree from the repository specified by URL—at revision REV if it is given; otherwise, at
HEAD, into PATH. If PATH is omitted, the last component of the URL is used for the local directory name.

The second form exports a clean directory tree from the working copy specified by PATHL into PATH2. All local changes will be
preserved, but files not under version control will not be copied.

Options

--depth ARG

--force
--ignore-externals
--ignore-keywords
--native-eol ARG
--quiet (-q)
--revision (-r) REV

Examples

Export from your working copy (doesn't print every file and directory):

$ svn export a-wc ny-export
Export conpl ete.

Export directly from the repository (prints every file and directory):

$ svn export file:///var/svn/repos mny-export
A nmy-export/test
A nmy-export/ qui z

I'E'>'<ported revision 15.

When rolling operating-system-specific release packages, it can be useful to export a tree that uses a specific EOL character for
line endings. The - - nat i ve- eol option will do this, but it affects only files that have svn: eol - styl e = nati ve proper-
ties attached to them. For example, to export atree with all CRLF line endings (possibly for aWindows . zi p file distribution):

282

Subversion Complete Reference

$ svn export file:///var/svn/repos ny-export --native-eol CRLF
A nmy-export/test
A nmy- export/quiz

I'E'>.<ported revision 15.

You can specify LR, CR, or CRLF asaline-ending type with the- - nat i ve- eol option.

283

Subversion Complete Reference

Name

svn help (h, ?) — Help!

Synopsis

svn hel p [SUBCOMWAND. . .]

Description

Thisisyour best friend when you're using Subversion and this book isn't within reach!
Options

None

284

Subversion Complete Reference

Name

svn import — Commit an unversioned file or tree into the repository.

Synopsis
svn inport [PATH URL
Description

Recursively commit a copy of PATHto URL. If PATHis omitted, “. ” is assumed. Parent directories are created in the repository as
necessary. Unversionable items such as device files and pipes areignored eveniif - - f or ce is specified.

Options

- - aut o- props

--depth ARG
--editor-cnd CVD
--encodi ng ENC
--file (-F) FILENAMVE
--force

--force-1og
--nmessage (-n) MESSAGE
- - no- aut o- props
--no-ignore

--quiet (-q)
--with-revprop ARG

Examples

This imports the local directory mypr oj intotrunk/ m sc in your repository. The directory t r unk/ m sc need not exist be-
fore you import into it—svn import will recursively create directories for you.

$ svn inmport -m "New inport" nyproj \
http://svn. red-bean. com repos/trunk/ m sc
Addi ng nmypr oj / sanpl e. t xt

"I:fansmtting file data
Conmitted revision 16.

Be aware that this will not create a directory named mypr oj in the repository. If that's what you want, simply add nypr oj to the
end of the URL:

$ svn inport -m"New inport" nyproj \
http://svn. red-bean. com repos/trunk/ m sc/ nyproj
Addi ng mypr oj / sanpl e. t xt

'ﬁansn’itting file data
Conmmitted revision 16.

285

Subversion Complete Reference

After importing data, note that the original tree is not under version control. To start working, you still need to svn checkout a
fresh working copy of thetree.

286

Subversion Complete Reference

Name

svn info — Display information about alocal or remote item.

Synopsis
svn info [TARGET[@REV] . . .]
Description

Print information about the working copy paths or URL s specified. The information displayed for each path may include (as pertin-
ent to the object at that path):

« information about the repository in which the object is versioned

* the most recent commit made to the specified version of the object
 any user-level locks held on the object

* local scheduling information (added, deleted, copied, etc.)

* |ocal conflict information

Options

--changelist (--cl) ARG
--depth ARG
--increnental
--recursive (-R
--revision (-r) REV
--targets FI LENAME
--xm

Examples

svn info will show you all the useful information that it has for itemsin your working copy. It will show information for files:

$ svn info foo.c

Pat h: foo.c

Name: foo.c

Wor ki ng Copy Root Path: /home/sally/projects/test

URL: http://svn.red-bean.com repos/test/foo.c

Repository Root: http://svn.red-bean.conm repos/test

Repository UUI D 5e7dl134a- 54f b- 0310- bd04- b611643e5c25

Revi si on: 4417

Node Kind: file

Schedul e: norma

Last Changed Author: sally

Last Changed Rev: 20

Last Changed Date: 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003)
Text Last Updated: 2003-01-16 21:18:16 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-13 21:50:19 -0600 (Mn, 13 Jan 2003)

287

Subversion Complete Reference

Checksum d6aeb60b0662ccceb6bced4bac344ch66

It will also show information for directories:

$ svn info vendors

Pat h: vendors

Wor ki ng Copy Root Path: /home/sally/projects/test

URL: http://svn.red-bean. con repos/test/vendors

Repository Root: http://svn.red-bean. comrepos/test

Repository UUI D. 5e7dl134a- 54f b- 0310- bd04- b611643e5c25

Revi sion: 19

Node Kind: directory

Schedul e: nor nal

Last Changed Author: harry

Last Changed Rev: 19

Last Changed Date: 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-16 23:39:02 -0600 (Thu, 16 Jan 2003)

svn info also acts on URLs (also note that the file r eade. doc in this exampleislocked, so lock information is aso provided):

$ svn info http://svn.red-bean. conf repos/test/readnme. doc

Pat h: readmne. doc

Name: readmne. doc

URL: http://svn.red-bean. confrepos/test/readne. doc

Repository Root: http://svn.red-bean.com repos/test

Repository UUI D: 5e7dl34a- 54f b- 0310- bd04- b611643e5c25

Revision: 1

Node Kind: file

Schedul e: norma

Last Changed Author: sally

Last Changed Rev: 42

Last Changed Date: 2003-01-14 23:21:19 -0600 (Tue, 14 Jan 2003)
Lock Token: opaquel ockt oken: 14011d4b- 54f b- 0310- 8541- dbd16bd471b2
Lock Omer: harry

Lock Created: 2003-01-15 17:35:12 -0600 (Wed, 15 Jan 2003)

Lock Comment (1 line):

My test |ock coment

Lastly, svn info output is availablein XML format by passing the - - xm option:

$ svn info --xm http://svn.red-bean. conirepos/test
<?xm version="1.0"7?>
<i nf 0>
<entry
ki nd="dir"
pat h="."
revision="1">
<url >http://svn.red-bean. comrepos/test</url >
<repository>
<root >http://svn.red-bean. confrepos/test</root>

288

Subversion Complete Reference

<uui d>5e7d134a- 54f b- 0310- bd04- b611643e5c25</ uui d>
</repository>
<wc- 1 nf o>
<schedul e>nor nal </ schedul e>
<dept h>i nfini ty</ dept h>
</ wec-i nf o>
<commi t
revi sion="1">
<aut hor >sal | y</ aut hor >
<dat e>2003- 01- 15T23: 35: 12. 8476477</ dat e>
</commit>
</entry>
</info>

289

Subversion Complete Reference

Name

svnlist (Is) — List directory entriesin the repository.

Synopsis
svn list [TARGET[@REV]...]
Description

List each TARCGET file and the contents of each TARGET directory as they exist in the repository. If TARGET is a working copy
path, the corresponding repository URL will be used.

The default TARCET is*. ", meaning the repository URL of the current working copy directory.

With - - ver bose (- v), svn list shows the following fields for each item:;

* Revision number of the last commit

Author of the last commit

If locked, the letter “O” (see the preceding section on svn info for details).

Size (in bytes)

» Date and time of the last commit

With - - xm , output isin XML format (with a header and an enclosing document element unless - - i ncr ement al is also spe-
cified). All of theinformation is present; the - - ver bose (- v) option is not accepted.

Options

--depth ARG
--increnental
--recursive (-R
--revision (-r) REV
--verbose (-v)
--xm

Examples

svn list ismost useful if you want to see what files arepository has without downloading aworking copy:

$ svn list http://svn.red-bean. com repos/test/support
README. t xt

| NSTALL

exanpl es/

You can passthe - - ver bose (- v) option for additional information, rather like the Unix command Is -I:

290

Subversion Complete Reference

$ svn list -v file:///var/svn/repos

16 sally 28361 Jan 16 23: 18 README.t xt
27 sally 0 Jan 18 15:27 | NSTALL
24 harry Jan 18 11:27 exanpl es/

You can also get svn list output in XML format with the - - xni option:

$ svn list --xm http://svn.red-bean. conirepos/test
<?xm version="1.0"7?>

<lists>
<list

pat h="http://svn.red-bean. conifrepos/test">
<entry

ki nd="dir">

<nane>exanpl es</ name>
<si ze>0</ si ze>
<commi t
revi si on="24">
<aut hor >harry</ aut hor >
<dat e>2008- 01- 18T06: 35: 53. 0488707</ dat e>
</commit>
</entry>
</list>
</lists>

For further details, see the earlier section the section called “svn list”.

291

Subversion Complete Reference

Name

svn lock — Lock working copy paths or URLsin the repository so that no other user can commit changes to them.

Synopsis
svn | ock TARGET...
Description

Lock each TARGET. If any TARCET is aready locked by another user, print a warning and continue locking the rest of the TAR-
CETs. Use- - f or ce to steal alock from another user or working copy.

Options

--encodi ng ENC

--file (-F) FILENAME
--force

--force-1og

--message (-nm) MESSAGE
--targets FILENAVE

Examples

Lock two filesin your working copy:

$ svn lock tree.jpg house.jpg
"tree.jpg' |ocked by user 'harry'.
"house. | pg' locked by user '"harry'.

Lock afilein your working copy that is currently locked by another user:

$ svn lock tree.jpg

svn: warni ng: WL60035: Path '/tree.jpg is already |ocked by user '"sally' in fi
| esystem ' /var/svn/repos/db'

$ svn lock --force tree.jpg

"tree.jpg’ |ocked by user 'harry'.

Lock afile without aworking copy:

$ svn lock http://svn.red-bean.com repos/test/tree.jpg
"tree.jpg' |ocked by user 'harry'.

For further details, see the section called “Locking”.

292

Subversion Complete Reference

Name
svn log — Display commit log messages.

Synopsis
svn | og [PATH|

svn | og URL[@REV] [PATH...]
Description

Shows log messages from the repository. If no arguments are supplied, svn log shows the log messages for all files and directories
inside (and including) the current working directory of your working copy. You can refine the results by specifying a path, one or
more revisions, or any combination of the two. The default revision range for alocal path is BASE: 1.

If you specify a URL alone, it prints log messages for everything the URL contains. If you add paths past the URL, only messages
for those paths under that URL will be printed. The default revision range for aURL isHEAD: 1.

With - - ver bose (- v), svn log will also print all affected paths with each log message. With - - qui et (- q), svn log will not
print the log message body itself, thisis compatible with - - ver bose (- v).

Each log message is printed just once, even if more than one of the affected paths for that revision were explicitly requested. Logs
follow copy history by default. Use - - st op- on- copy to disable this behavior, which can be useful for determining branch
points.

Options

--change (-c) ARG
--depth ARG

--diff

--diff-cnmd CVD
--extensions (-x) ARG
--increnental
--internal -diff
--limit (-1) NUM
--quiet (-q)
--revision (-r) REV

- - st op-on-copy
--targets FI LENAME
--use-nerge-history (-9)
--verbose (-v)
--with-all-revprops
--W t h-no-revprops
--with-revprop ARG
--xm

Examples

Y ou can see the log messages for all the paths that changed in your working copy by running svn | og from the top:

$ svn | og

r20 | harry | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

293

Subversion Complete Reference

Examine all log messages for a particular file in your working copy:

$ svn log foo.c

r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line
Added defi nes.

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

If you don't have a working copy handy, you canlog a URL:

$ svn log http://svn.red-bean. conlrepos/test/foo.c

r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line
Added defi nes.

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

If you want severa distinct paths underneath the same URL, you can usethe URL [PATH. . .] syntax:

$ svn log http://svn.red-bean.confrepos/test/ foo.c bar.c

r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line
Added defi nes.

r31 | harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line

Added new file bar.c

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

The- - ver bose (- v) option causes svn log to include information about the paths that were changed in each displayed revision.
These paths appear, one path per line of output, with action codes that indicate what type of change was made to the path.

294

Subversion Complete Reference

$ svn log -v http://svn.red-bean.confrepos/test/ foo.c bar.c

r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line
Changed pat hs:

M /foo.c
Added defi nes.

r31 | harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line
Changed pat hs:
A /bar.c

Added new file bar.c

r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

svn log usesjust a handful of action codes, and they are similar to the ones the svn update command uses:

A
The item was added.

The item was del eted.
Properties or textual contents on the item were changed.
Theitem was replaced by a different one at the same location.

In addition to the action codes which precede the changed paths, svn log with the - - ver bose (- v) option will note whether a
path was added or replaced as the result of a copy operation. It does so by printing (f r om COPY- FROM PATH: COPY-
FROW REV) after such paths.

When you're concatenating the results of multiple calls to the log command, you may want to use the - - i ncr enent al option.
svn log normally prints out a dashed line at the beginning of alog message, after each subsequent log message, and following the
final log message. If you ran svn log on arange of two revisions, you would get this:

$ svn log -r 14:15

However, if you wanted to gather two nonsequential log messages into afile, you might do something like this:

$ svn log -r 14 > nyl og

295

Subversion Complete Reference

$ svn log -r 19 >> nyl og
$ svn log -r 27 >> nyl og
$ cat nmylog

$ svn log --incremental -r 14 > nyl og
$ svn log --incremental -r 19 >> nyl og
$ svn log --incremental -r 27 >> nyl og
$

cat nyl og

The- - i ncrenent al option provides similar output control when using the - - xm option:

$ svn log --xm --incremental -r 1 sandw ch.txt
<l ogentry

revision="1">
<aut hor >har r y</ aut hor >
<dat €>2008- 06- 03T06: 35: 53. 048870Z</ dat e>
<nsg>lnitial Inport.</nsg>
</l ogentry>

asin the following:

@) Sometimes when you run svn log on a specific path and a specific revision, you see no log information output at all,

$ svn log -r 20 http://svn.red-bean. conl untouched. t xt

296

Subversion Complete Reference

That just means the path wasn't modified in that revision. To get log information for that revision, either run the log
operation against the repository's root URL, or specify a path that you happen to know was changed in that revision:

$ svn log -r 20 touched. txt

r20 | sally | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

Made a change.

Beginning with Subversion 1.7, users can take advantage of a special output mode which combines the information from svn log
with what you would see when running svn diff on the same targets for each revision of the log. Simply invoke svn log with the -
- di f f option to trigger this output mode.

$ svn log -r 20 touched.txt --diff

Made a change.

| ndex: touched. t xt

--- touched.txt (revision 19)

+++ touched. txt (revision 20)

@-1 +1,2 @@

This is the file "touched. txt"'.

+We add such exciting text to files around here!

Aswith svn diff, you may also make use of many of the various options which control the way the difference is generated, includ-
ing--depth,--di ff-cnd, and- - ext ensi ons (- x).

297

Subversion Complete Reference

Name

svn merge — Apply the differences between two sources to aworking copy path.

Synopsis

svn merge [-¢c M,N...] | -r NM...] SOURCE[@REV] [TARGET_WCPATH]
svn nerge --reintegrate SOURCE[@GREV] [TARGET_WCPATH]

svn nmerge SOURCEL[@N] SOURCE2[@ [TARGET _WCPATH]

Description

In al three forms TARGET _WCPATH is the working copy path that will receive the differences. If TARGET _WCPATH is omitted,
the changes are applied to the current working directory, unless the sources have identical basenames that match a file within the
current working directory. In this case, the differences will be applied to that file.

In the first two forms, SOURCE can be either a URL or a working copy path (in which case its corresponding URL is used). If the
peg revision REV is not specified, then HEAD is assumed. In the third form the same rules apply for SOURCEL, SOURCE2, M and
Nwith the only difference being that if either sourceis aworking copy path, then the peg revisions must be explicitly stated.

* Sync and Cherrypick Merges

The first form, when used without either the- ¢ or - r options, iscalled a“sync” mergeand-r 1: REVisimplied. This variant
is used to merge all eligible changes to a branch from its immediate ancestor branch, see the section called “Keeping a Branch in

Sync”.

When the first form is used with the - ¢ or - r options, thisis caled a “cherrypick” merge and is used to merge an explicitly
defined set of changes from one branch to another, see the section called “ Cherrypicking”

Multiple - ¢ and/or - r instances may be specified, and mixing of forward and reverse ranges is allowed— the
_} ranges are internally compacted to their minimum representation before merging begins (which may result in ano-
op merge or conflicts that cause the merge to stop before merging all of the requested revisions).

In both variants of the first form, SOURCE in revision REV is compared as it existed between revisions N and Mfor each revision
range provided.

* Reintegrate Merges
The second form is called a“reintegrate merge” and is used to bring changes from a feature branch (SOURCE) back into the fea-
ture branch'simmediate ancestor branch (TARGET _WCPATH).

Reintegrate merges support only this specialized use case and as such have a number of special requirements and

_) limitations that the other two merge forms do not posses. See the section called “Keeping a Branch in Sync”, the
section called “Reintegrating a Branch”, the section called “Keeping a Reintegrated Branch Alive’, and the section
called “ Feature Branches’.

e 2-URL Merges

In the third form, called a“2-URL Merge”, the difference between SOURCEL at revision N and SOURCE2 at revision Mis gener-
ated and applied to TARGET_WCPATH. The revisions default to HEAD if omitted.

298

Subversion Complete Reference

If Merge Tracking is active, then Subversion will internally track metadata (i.e. the svn: ner gei nf o property) about merge op-
erations when the two merge sources are ancestrally related—if the first source is an ancestor of the second or vice versa—thisis
guaranteed to be the case when using the first two forms. Subversion will aso take preexisting merge metadata on the working
copy target into account when determining what revisions to merge and in an effort to avoid repeat merges and needless conflicts it
may only merge a subset of the requested ranges.

D Merge Tracking can be disabled by using the - - i gnor e- ancest r y option.

Unlike svn diff, the merge command takes the ancestry of a file into consideration when performing a merge operation. This is
very important when you're merging changes from one branch into another and you've renamed a file on one branch but not the
other.

Options

--accept ACTI ON

--al |l ow m xed-revi sions
--change (-c) ARG
--depth ARG
--diff3-cnmd CVMD
--dry-run
--extensions (-x) ARG
--force
--ignore-ancestry
--quiet (-q)
--record-only
--reintegrate
--revision (-r) REV

Examples

Merge a branch back into the trunk (assuming that you have an up-to-date working copy of the trunk):

$ svn nerge --reintegrate \
http://svn. exanpl e. coni repos/ cal ¢/ branches/ ny- cal c- branch
-- Merging differences between repository URLs into '.":

0] button.c

] i nteger.c

U Makefil e
u .

--- Recording nergeinfo for merge between repository URLs into '."':
u .

$ # build, test, verify,

$ svn commit -m "Merge ny-cal c-branch back into trunk!"

Sendi ng .

Sendi ng button.c

Sendi ng i nteger.c
Sendi ng Makefil e

Transmitting file data ..
Conmmitted revision 391.

299

Subversion Complete Reference

To merge changesto asinglefile:

$ svn nerge -c 31 A trunk/thhgttg.txt thhgttg.txt

--- Merging r31 into 'thhgttg.txt':

U thhgttg. t xt

--- Recording nergeinfo for merge of r31 into '"thhgttg.txt':
U thhgttg.txt

300

Subversion Complete Reference

Name

svn mergeinfo — Query merge-related information. See the section called “Mergeinfo and Previews’ for details.

Synopsis
svn mergei nfo SOURCE_URL[@REV] [TARGET[@GREV]]
Description

Query information related to merges (or potential merges) between SOURCE- URL and TARGET. If the - - show-r evs option is
not provided, display revisions which have been merged from SOURCE- URL to TARGET. Otherwise, display either ner ged or
el i gi bl e revisions as specified by the - - show- r evs option.

Options

--depth ARG
--recursive (-R
--revision (-r) REV
--showrevs ARG

Examples

Find out which changesets your have been merged from your trunk directory into your test branch:

$ svn propget svn:nergei nfo ~/ branches/test

/ branches/ ot her: 3-4

/trunk:11-13, 14, 16

$ svn nmergeinfo --showrevs nerged "/ trunk ~/ branches/test
ril

ri2

ri3

ri4

ri6

$

Note that the default output from the svn mergeinfo command is to display merged revisions, so the - - show r evs option
shown in the command line of the previous exampleis not strictly required.

Find out which changesets from your trunk directory have not yet been merged into your test branch:

$ svn nmergeinfo --showrevs eligible ~/trunk ”~/branches/test
ris

ri7

r20

r21

r22

$

301

Subversion Complete Reference

Name

svn mkdir — Create anew directory under version control.

Synopsis
svn nkdir PATH. ..

svn nkdir URL...

Description

Create a directory with a name given by the final component of the PATH or URL. A directory specified by a working copy PATH
is scheduled for addition in the working copy. A directory specified by a URL is created in the repository via an immediate com-
mit. Multiple directory URLs are committed atomically. In both cases, all the intermediate directories must already exist unless the
- - par ent s option isused.

Options

--editor-cnd CMD
--encodi ng ENC

--file (-F) FILENAMVE
--force-1o0g

--nmessage (-n) MESSAGE
--parents

--quiet (-q)
--with-revprop ARG

Examples

Create adirectory in your working copy:

$ svn nkdir newdir
A newdi r

Create one in the repository (thisis an instant commit, so alog message is required):

$ svn nkdir -m"Making a new dir." http://svn.red-bean. conirepos/ newdir

Commi tted revision 26.

302

Subversion Complete Reference

Name

svn move (mv) — Move afile or directory.
Synopsis

svn nove SRC... DST
Description

This command movesfiles or directories in your working copy or in the repository.

This command is equivalent to an svn copy followed by svn delete.

@

When moving multiple sources, they will be added as children of DST, which must be adirectory.

Subversion does not support moving between working copies and URLSs. In addition, you can only move files within
a single repository—Subversion does not support cross-repository moving. Subversion supports the following types
of moves within a single repository:

&

WC #WC
Move and schedule afile or directory for addition (with history).

URL # URL
Complete server-side rename.

Options

--editor-cnd CVD
--encodi ng ENC

--file (-F) FILENAMVE
--force

--force-1og

--message (-n) MESSAGE
--parents

--quiet (-q)
--revision (-r) REV
--with-revprop ARG

Examples

Move afilein your working copy:

$ svn nove foo.c bar.c
A bar.c
D foo.c

303

Subversion Complete Reference

Move severd filesin your working copy into a subdirectory:

$ svn nove baz.c bat.c qux.c src
A src/ baz.c

D baz. c

A src/bat.c

D bat.c

A src/ qux. c

D qux. c

Move afilein the repository (thisisan immediate commit, so it requires a commit message):

svn. r ed- bean. conf r epos/ foo. c \

$ svn nove -m"Mwve a file" h
h svn. r ed- bean. conf r epos/ bar. c

ttp://
ttp://

Commi tted revision 27.

304

Subversion Complete Reference

Name
svn patch — Apply changes represented in a unidiff patch to the working copy.

Synopsis
svn pat ch PATCHFI LE [WCPATH]|
Description

This subcommand will apply changes described a unidiff-formatted patch file PATCHFI LE to the working copy WCPATH. As with
most other working copy subcommands, if WCPATH is omitted, the changes are applied to the current working directory. A unidiff
patch suitable for application to a working copy can be produced with the svn diff command or third-party differencing tools. Any
non-unidiff content found in the patch fileisignored.

Changes listed in the patch file will either be applied or rejected. If a change does not match at its exact line offset, it may be ap-
plied earlier or later in the file if a match is found elsewhere for the surrounding lines of context provided by the patch. A change
may also be applied with fuzz—meaning, one or more lines of context are ignored when attempting to match the change location. If
no matching context can be found for a change, the change conflicts and will be written to a reject file which bears the extension
.svnpatch.rej.

svn patch reports a status line for patched file or directory using letter codes, very similar to the way that svn update provides no-
tification. The letter codes have the following meanings:

A
Added
D
Deleted
C
Conflicted
G
Merged
U
Updated

Changes applied with an offset or fuzz are reported on lines starting with the ">' symbol. Y ou should review such changes care-
fully.

If the patch removes al content from afile, that file is automatically scheduled for deletion. Likewise, if the patch creates a new
file, that file is automatically scheduled for addition. Use svn revert to undo undesired deletions and additions.

Options

--dry-run
--ignore-whitespace
--quiet (-q)
--reverse-diff
--strip NUM

305

Subversion Complete Reference

Examples

Apply asimple patch file generated by the svn diff command. Our patch file will create a new file, delete another file, and modify
athird's contents and properties. Here's the patch file itself (which we'll assume is creatively named PATCH):

I ndex: deleted-file

--- deleted-file (revision 3)
+++ del eted-file (working copy)
@-1 +0,0 @@

-This file will be del eted.

I ndex: changed-file

--- changed-file (revision 4)
+++ changed-file (working copy)
@-1,6 +1,6 @@

The letters in a line of text

Coul d make your day nuch better.

But expanded i nto paragraphs,
-1'd tell of kangaroos and cal ves
+l'd tell of nonkeys and giraffes
Until you were all smiles and | aughs
Fromny letter made of letters.

Property changes on: changed-file

Added: propnane
-0,0 +1

+pr opval ue

I ndex: added-file

--- added-file (revision 0)
+++ added-file (working copy)
@-0,0 +1 @@

+This is an added fil e.

We can apply the previous patch file to another working copy from our repository using svn patch, and verify that it did the right
thing by using svn diff:

$ cd /sone/ ot her/ wor ki ngcopy

$ svn patch /path/to/ PATCH
del eted-file

UU changed-file

A added-file

$ svn diff

I ndex: deleted-file

--- deleted-file (revision 3)
+++ del eted-file (working copy)
@-1 +0,0 @@

-This file will be del eted.

I ndex: changed-file

--- changed-file (revision 4)

+++ changed-file (working copy)
@-1,6 +1,6 @@

The letters in a line of text
Coul d make your day nuch better.

306

Subversion Complete Reference

But expanded i nto paragraphs,
-1"d tell of kangaroos and cal ves
+l'd tell of nonkeys and giraffes
Until you were all smiles and | aughs
Fromny letter made of letters.

Property changes on: changed-file

Added: propnane
-0,0 +1

+pr opval ue

I ndex: added-file

--- added-file (revision 0)
+++ added-file (working copy)
@-0,0 +1 @@

+This is an added fil e.

Sometimes you might need Subversion to interpret a patch “in reverse’—where added things get treated as removed things, and
vice-versa. Usethe - - r ever se-di f f option for this purpose. In the following example, we'll squirrel away a patch file which
describes the changes in our working copy, and then use areverse patch operation to undo those changes.

$ svn status

M f oo.c

$ svn diff > PATCH
$ cat PATCH

I ndex: foo.c

--- foo.c (revision 128)
+++ fo0o0.c (working copy)
@ -1003,7 +1003,7 @@
return ERROR_ON THE G STRI NG

/* Do sonething in a |oop. */

- for (i =0; i <txns->nelts; i++)
+ for (i =0; i <txns->nelts; i--)
status = do_sonet hing(i);
if (status)
$ svn patch --reverse-di ff PATCH
U foo.c
$ svn status

$

307

Subversion Complete Reference

Name

svn propdel (pdel, pd) — Remove a property from an item.

Synopsis

svn propdel PROPNAME [PATH. . .]

svn propdel PROPNAME --revprop -r REV [TARCGET]

Description

This removes properties from files, directories, or revisions. The first form removes versioned properties in your working copy,
and the second removes unversioned remote properties on a repository revision (TARGET determines only which repository to ac-

Cess).

Options

--changelist (--cl) ARG
--depth ARG

--quiet (-q)
--recursive (-R
--revision (-r) REV
--revprop

Examples

Delete a property from afile in your working copy:

$ svn propdel svn:ninme-type sone-script
property 'svn:m ne-type' deleted from'sone-script'.

Delete arevision property:

$ svn propdel --revprop -r 26 rel ease-date
property 'rel ease-date' deleted fromrepository revision '26'

308

Subversion Complete Reference

Name

svn propedit (pedit, pe) — Edit the property of one or more items under version control. See svn propset (pset, ps) later in this
chapter.

Synopsis
svn propedit PROPNAVE TARGET.. .

svn propedit PROPNAME --revprop -r REV [TARGET]
Description

Edit one or more properties using your favorite editor. The first form edits versioned properties in your working copy, and the
second edits unversioned remote properties on arepository revision (TARGET determines only which repository to access).

Options

--editor-cnd CVD
--encodi ng ENC

--file (-F) FILENAME
--force

--force-1o0g

--nmessage (-n) MESSAGE
--revision (-r) REV
--revprop
--with-revprop ARG

Examples

svn propedit makes it easy to modify properties that have multiple values:

$ svn propedit svn: keywords foo.c

svn will open in your favorite text editor a tenporary file

contai ning the current contents of the svn: keywords property. You
can add multiple values to a property easily here by entering one
val ue per line. \Wen you save the tenporary file and exit,
Subversion will re-read the tenporary file and use its updated
contents as the new val ue of the property.

HH TR

Set new val ue for property 'svn: keywords' on 'foo.c'

309

Subversion Complete Reference

Name
svn propget (pget, pg) — Print the value of a property.

Synopsis
svn propget PROPNAMVE [TARGET[@REV] . . .]

svn propget PROPNAME --revprop -r REV [URL]

Description

Print the value of a property on files, directories, or revisions. The first form prints the versioned property of an item or items in
your working copy, and the second prints unversioned remote properties on a repository revision. See the section called
“Properties’ for more information on properties.

Options

--changelist (--cl) ARG
--depth ARG

--recursive (-R
--revision (-r) REV
--revprop

--strict

--verbose (-v)

--xnl

Examples

Examine a property of afile in your working copy:

$ svn propget svn: keywords foo.c
Aut hor

Dat e

Rev

The same goes for arevision property:

$ svn propget svn:log --revprop -r 20
Began j ournal .

For amore structured display of properties, usethe - - ver bose (- v) option:

$ svn propget svn: keywords foo.c --verbose
Properties on 'foo.c':
svn: keywor ds

310

Subversion Complete Reference

Aut hor
Dat e
Rev

By default, svn propget will append atrailing end-of-line sequence to the property value it prints. Most of the time, thisis a desir-
able feature that has a positive effect on the printed output. But there are times when you might wish to capture the precise property
value, perhaps because that value is not textual in nature, but of some binary format (such as a JPEG thumbnail stored as a property
value, for example). To disable pretty-printing of property values, usethe- - stri ct option.

Lastly, you can get svh propget output in XML format with the - - xmi option:

$ svn propget --xm svn:ignore
<?xm version="1.0"7?>
<properties>
<t ar get
pat h="">
<property
nane="svn:ignore">*. 0
</ property>
</target>
</ properties>

311

Subversion Complete Reference

Name
svn proplist (plist, pl) — List al properties.

Synopsis

svn proplist [TARGET[@REV]...]

svn proplist --revprop -r REV [TARCET]
Description

List al properties on files, directories, or revisions. The first form lists versioned properties in your working copy, and the second
lists unversioned remote properties on arepository revision (TARGET determines only which repository to access).

Options

--changelist (--cl) ARG
--depth ARG

--quiet (-q)
--recursive (-R
--revision (-r) REV
--revprop

--verbose (-v)

--xm

Examples

Y ou can use proplist to see the properties on an item in your working copy:

$ svn proplist foo.c
Properties on 'foo.c':
svn: m ne-type
svn: keywor ds
owner

But with the- - ver bose (- v) flag, svn proplist is extremely handy asit also shows you the values for the properties:

$ svn proplist -v foo.c
Properties on 'foo.c'
svn: m me-type
text/plain
svn: keywor ds
Aut hor Date Rev
owner
sal ly

Lastly, you can get svn proplist output in xml format with the - - xni option:

312

Subversion Complete Reference

$ svn proplist --xn
<?xm version="1.0"?>
<properties>
<t ar get
pat h=".">
<property
name="svn:ignore"/>
</target>
</ properties>

313

Subversion Complete Reference

Name
svn propset (pset, ps) — Set PROPNANME to PROPVAL on files, directories, or revisions.

Synopsis
svn propset PROPNAMVE [PROPVAL | -F VALFILE] PATH...

svn propset PROPNAME --revprop -r REV [PROPVAL | -F VALFI LE] [TARCET]

Description

Set PROPNAME to PROPVAL on files, directories, or revisions. The first example creates a versioned, local property change in the
working copy, and the second creates an unversioned, remote property change on a repository revision (TARGET determines only
which repository to access).

Subversion has a number of “specia” properties that affect its behavior. See the section called “ Subversion Proper-
_/J ties’ later in this chapter for more on these properties.

Options

--changelist (--cl) ARG
--depth ARG

--encodi ng ENC

--file (-F) FILENAME
--force

--quiet (-q)
--recursive (-R
--revision (-r) REV
--revprop

--targets FlI LENAME

Examples

Set the MIME type for afile:

$ svn propset svn:nime-type inage/jpeg foo.jpg
property 'svn:mnme-type' set on 'foo.|pg

On aUnix system, if you want afile to have the executable permission set:

$ svn propset svn: executabl e ON somescri pt
property 'svn:executable' set on 'sonescript'

Perhaps you have an internal policy to set certain properties for the benefit of your coworkers:

314

Subversion Complete Reference

$ svn propset owner sally foo.c
property 'owner' set on 'foo.c'

If you made a mistake in alog message for a particular revision and want to change it, use - - r evpr op and set svn: | og to the
new log message:

$ svn propset --revprop -r 25 svn:log "Journal ed about trip to New York."
property 'svn:log' set on repository revision '25

Or, if you don't have aworking copy, you can provide a URL.:

$ svn propset --revprop -r 26 svn:log "Document nap." \
http://svn. red-bean. com r epos
property 'svn:log' set on repository revision '25'

Lastly, you can tell propset to take itsinput from afile. You could even use this to set the contents of a property to something bin-
ary:

$ svn propset owner-pic -F sally.jpg npo.c
property 'owner-pic' set on 'npo.c'

By default, you cannot modify revision properties in a Subversion repository. Y our repository administrator must ex-
/ plicitly enable revision property modifications by creating a hook named pr e- r evpr op- change. See the section
called “Implementing Repository Hooks’ for more information on hook scripts.

315

Subversion Complete Reference

Name

svn relocate — Relocate the working copy to point to a different repository root URL.

Synopsis
svn rel ocate FROM PREFI X TO PREFI X [PATH. . .]

svn relocate TO URL [PATH|
Description

Sometimes an administrator might change the location (or apparent location, from the client's perspective) of arepository. The con-
tent of the repository doesn't change, but the repository's root URL does. The hosthame may change because the repository is now
being served from a different computer. Or, perhaps the URL scheme changes because the repository is now being served via SSL
(using htt ps: / /) instead of over plain HTTP. There are many different reasons for these types of repository relocations. But
ideally, a*“change of address’ for arepository shouldn't suddently cause all the working copies which point to that repository to be-
come forever unusable. And fortunately, that's not the case. Rather than force users to check out a new working copy when a repos-
itory is relocated, Subversion provides the svn relocate command, which “rewrites’ the working copy's administrative metadata to
refer to the new repository location.

The first svn relocate syntax allows you to update one or more working copies by what essentially amounts to a find-and-replace
within the repository root URLSs recorded in those working copies. Subversion will replace the initial substring FROW PREFI X
with the string TO- PREFI X in those URLSs. These initial URL substrings can be as long or as short as is hecessary to differentiate
between them. Obvioudly, to use this syntax form, you need to know both the current root URL of the repository to which the
working copy is pointing, and the new URL of that repository. (Y ou can use svn info to determine the former.)

The second syntax does not require that you know the current repository root URL with which the working copy is associated at

all—only the new repository URL (TO- URL) to which it should be pointing. In this syntax form, only one working copy may be
relocated at atime.

Q Users often get confused about the difference between svn switch and svn relocate. Here's the rule of thumb:
« If the working copy needs to reflect a new directory within the repository, use svn switch.

« If the working copy still reflects the same repository directory, but the location of the repository itself has changed,
use svn relocate.

Options
--ignore-externals

Examples

Let's start with aworking copy that reflects alocal repository URL:

$ svn info | grep URL:
URL: file:///var/svn/repos/trunk

316

Subversion Complete Reference

One day the administrator decides to rename the on-disk repository directory. We missed the memo, so we see an error the next
time we try to update our working copy.

$ svn up

Updating '."':
svn: E180001: Unable to connect to a repository at URL 'file:///var/svn/repos/trunk'

After cornering the administrator over by the vending machines, we learn about the repository being moved and are told the new
URL. Rather than checkout a new working copy, though, we simply ask Subversion to rewrite the working copy metadata to point
to the new repository location.

$ svn relocate file:///var/svn/ newrepos/trunk

Subversion doesn't tell us much about what it did, but hey—error-free operation is really al we need, right? Our working copy is
functional for online operations again.

$ svn up

Updating '."':

A i b/ new. c

M src/ code. h

M src/ headers. h

Once again, this type of relocation affects working copy metadata only. It will not change your versioned or unver-
/ sioned file contents, perform any version control operations (such as commits or updates), and so on.

A few months later, we're told that the company is moving devel opment to separate machines and that we'll be using HTTP to ac-
cess the repository. So we relocate our working copy again.

$ svn relocate http://svn.conpany.con repos/trunk
$

Now, each time we perform a relocation of this sort, Subversion contacts the repository—at its new URL, of course—to verify a
few things.

First, it wants to compare the UUID of the repository against what is stored in the working copy. If these UUIDs don't match, the
working copy relocation is disallowed. Maybe thisisn't the same repository (just in anew location) after all?

317

Subversion Complete Reference

Secondly, Subversion wants to ensure that the updated working copy metadata jives with respect to the directory location inside the
repository. Subversion won't let you accidentally relocate a working copy of a branch in your repository to the URL of a different
branch in the same repository. (That's what svn switch, described in svn switch (sw), isfor.)

Also, Subversion will not allow you to relocate a subtree of the working copy. If you're going to relocate the working copy at al,
you must relocate the whole thing. This is to protect the integrity of the working copy metadata and behavior as a whole. (And
really, you'd be hard pressed to come up with a compelling reason to relocate only a piece of your working copy anyway.)

Let's look at one final relocation opportunity. After using HTTP access for some time, the company moves to SSL-only access.
Now, the only change to the repository URL is that the scheme goes from being htt p: // to being htt ps: //. There are two

different ways that we could make our working copy reflect ths change. The first isto do exactly as we've done before and rel ocate
to the new repository URL.

% svn relocate http://svn. conpany. conirepos/trunk

But we have another option here, too. We could simply ask Subversion to swap out the changed prefixes of the URL.

$ svn relocate http https
$

Either approach leaves us a working copy whose metadata has been updated to point to the right repository location.

By default, svn relocate will traverse any external working copies nested within your working copy and attempt relocation of those
working copies, too. Usethe - - i gnor e- ext er nal s option to disable this behavior.

318

Subversion Complete Reference

Name

svn resolve — Resolve conflicts on working copy files or directories.

Synopsis
svn resol ve PATH...
Description

Resolve “conflicted” state on working copy files or directories. This routine does not semantically resolve conflict markers;
however, it replaces PATH with the version specified by the - - accept argument and then removes conflict-related artifact files.
This allows PATH to be committed again—that is, it tells Subversion that the conflicts have been “resolved.”

See the section called “Resolve Any Conflicts’ for an in-depth look at resolving conflicts.

Options

--accept ACTI ON
--depth ARG
--quiet (-q)
--recursive (-R
--targets FlI LENAME

Examples

Here's an example where, after a postponed conflict resolution during update, svn resolve replaces the all conflictsin file f 0o. ¢
with your edits:

$ svn update

Updating '."':

Conflict discovered in 'foo.c'.

Sel ect: (p) postpone, (df) diff-full, (e) edit,
(nc) mine-conflict, (tc) theirs-conflict,
(s) show all options: p

C foo.c

Updated to revision 5.

Summary of conflicts:

Text conflicts: 1
$ svn resolve --accept mne-full foo.c
gesolved conflicted state of 'foo.c

319

Subversion Complete Reference

Name

svn resolved — Deprecated. Remove “ conflicted” state on working copy files or directories.

Synopsis
svn resol ved PATH. ..

Description

This command has been deprecated in favor of running svn resol ve --accept worki ng PATH. See svn resolve in the
preceding section for details.

Remove “conflicted” state on working copy files or directories. This routine does not semantically resolve conflict markers; it
merely removes conflict-related artifact files and allows PATH to be committed again; that is, it tells Subversion that the conflicts
have been “resolved.” See the section called “Resolve Any Conflicts’ for an in-depth look at resolving conflicts.

Options

--depth ARG
--quiet (-q)
--recursive (-R
--targets FILENAVE

Examples

If you get a conflict on an update, your working copy will sprout three new files:

$ svn update

Updating '.":

C foo.c

Updated to revision 31.

Summary of conflicts:
Text conflicts: 1

$ |Is foo.c*

foo.c
foo.c.m ne
foo.c.r30
foo.c.r31
$

Once you've resolved the conflict and f 00. ¢ is ready to be committed, run svn resolved to let your working copy know you've
taken care of everything.

You can just remove the conflict files and commit, but svn resolved fixes up some bookkeeping data in the working
copy administrative areain addition to removing the conflict files, so we recommend that you use this command.

320

Subversion Complete Reference

Name

svnrevert — Undo al local edits.

Synopsis

svn revert PATH. ..

Description

Reverts any local changesto afile or directory and resolves any conflicted states. svn revert will revert not only the contents of an
item in your working copy, but also any property changes. Finally, you can use it to undo any scheduling operations that you may

have performed (e.g., files scheduled for addition or deletion can be “unscheduled”).

Options

--changelist (--cl) ARG
--depth ARG

--quiet (-q)
--recursive (-R
--targets FI LENAME

Examples

Discard changesto afile:

$ svn revert foo.c
Reverted foo.c

If you want to revert awhole directory of files, usethe - - dept h=i nfi ni t y option:

$ svn revert --depth=infinity .
Reverted newdir/afile

Reverted foo.c

Reverted bar.txt

Lastly, you can undo any scheduling operations:

$ svn add mi stake.txt whoops

A m st ake. t xt
A whoops
A whoops/ oopsi e. ¢

$ svn revert m stake.txt whoops
Reverted ni stake.t xt
Reverted whoops

321

Subversion Complete Reference

$ svn status
? m st ake. t xt
? whoops

svn revert is inherently dangerous, since its entire purpose is to throw away data—namely, your uncommitted
changes. Once you've reverted, Subversion provides no way to get back those uncommitted changes.

If you provide no targets to svn revert, it will do nothing. To protect you from accidentally losing changes in your
working copy, svn revert requires you to explicitly provide at least one target.

322

Subversion Complete Reference

Name
svn status (stat, st) — Print the status of working copy files and directories.

Synopsis
svn status [PATH. ..]
Description

Print the status of working copy files and directories. With no arguments, it prints only locally modified items (no repository ac-
cess). With - - show updat es (- u), it adds working revision and server out-of-date information. With - - ver bose (- v), it
prints full revision information on every item. With - - qui et (- q), it prints only summary information about locally modified
items.

The first seven columns in the output are each one character wide, and each column gives you information about a different aspect
of each working copy item.

The first column indicates that an item was added, deleted, or otherwise changed:
No modifications.
Item is scheduled for addition.
Item is scheduled for deletion.
Item has been modified.

Item has been replaced in your working copy. This means the file was scheduled for deletion, and then a new file with the
same name was scheduled for addition in its place.

The contents (as opposed to the properties) of the item conflict with updates received from the repository.
Item is present because of an externals definition.

Item isbeing ignored (e.g., withthesvn: i gnor e property).

Item is not under version control.

Item is missing (e.g., you moved or deleted it without using svn). This also indicates that a directory is incomplete (a checkout
or update was interrupted).

Item is versioned as one kind of object (file, directory, link), but has been replaced by a different kind of object.

The second column tells the status of afile's or directory's properties:

323

Subversion Complete Reference

No modifications.

'M
Properties for thisitem have been modified.
'C
Properties for thisitem are in conflict with property updates received from the repository.

The third column is populated only if the working copy directory is locked (see the section called “ Sometimes You Just Need to
Clean Up"):

Item is not locked.
oL
Item islocked.

The fourth column is populated only if the item is scheduled for addition-with-history:

No history scheduled with commit.
C

History scheduled with commit.

The fifth column is populated only if the item is switched relative to its parent (see the section called “ Traversing Branches’):

Item isachild of its parent directory.
L
Item is switched.

The sixth column is populated with lock information:

When - - show updat es (- u) isused, thefileis not locked. If - - show updat es (- u) is not used, this merely means that
thefileis not locked in this working copy.

K
Fileislocked in thisworking copy.
@]
Fileislocked either by another user or in another working copy. This appears only when - - show updat es (- u) is used.
T
File was locked in this working copy, but the lock has been “stolen” and isinvalid. The file is currently locked in the reposit-
ory. This appears only when - - show updat es (- u) isused.
B

324

Subversion Complete Reference

File was locked in this working copy, but the lock has been “broken” and isinvalid. Thefileis no longer locked. This appears
only when - - show updat es (- u) isused.

The seventh column is populated only if the item is the victim of atree conflict:

Item is not the victim of atree conflict.

'C
Item is the victim of atree conflict.

The eighth column is always blank.

The out-of-date information appears in the ninth column (only if you passthe - - show updat es (- u) option):

Theitem in your working copy is up to date.

[T

A newer revision of the item exists on the server.

The remaining fields are variable width and delimited by spaces. The working revision is the next field if the - - show updat es
(-u)or--verbose (- v) option is passed.

If the- - ver bose (- v) option is passed, the last committed revision and last committed author are displayed next.

The working copy path is aways the final field, so it can include spaces.

Options

--changelist (--cl) ARG
--depth ARG
--ignore-externals
--increnental
--no-ignore

--quiet (-q)

--show updates (-u)
--verbose (-v)

--xm

Examples

Thisisthe easiest way to find out what changes you have made to your working copy:

$ svn status wc
M we/ bar. c
A + we/ gax. ¢

If you want to find out what files in your working copy are out of date, pass the - - show updat es (- u) option (this will not

325

Subversion Complete Reference

make any changes to your working copy). Here you can see that we/ f 0o. ¢ has changed in the repository since we last updated
our working copy:

$ svn status -u we

M 965 we/ bar. ¢
* 965 we/ f oo. ¢
A + 965 we/ gax. ¢
St at us agai nst revi sion: 981
- - show updat es (- u) only places an asterisk next to items that are out of date (i.e., items that will be updated
/ from the repository if you later use svn update). - - show updat es (- u) does not cause the status listing to reflect

the repository's version of the item (although you can see the revision number in the repository by passing the -
-ver bose (- v) option).

The most information you can get out of the status subcommand is as follows:

$ svn status -u -v we

M 965 938 sally we/ bar . c
* 965 922 harry we/ foo. ¢
A + 965 687 harry we/ gax. ¢
965 687 harry we/ zig. c

St at us agai nst revi sion: 981

Lastly, you can get svn status output in XML format with the - - xni option:

$ svn status --xm wc
<?xm version="1.0"7?>
<st at us>
<t ar get
pat h="wc" >
<entry
pat h="gax. c">
<we- st at us
props="none"
i tenE"added"
revi sion="0">
</ wc- st at us>
</entry>
<entry
pat h="bar.c">
<wec- st at us
props="nor nal "
i tenE" nodi fied"
revi si on="965">
<commi t
revi si on="965">
<aut hor >sal | y</ aut hor >
<dat e>2008- 05- 28T06: 35: 53. 048870Z</ dat e>
</commit>
</ wc- st at us>
</entry>
</target>

326

Subversion Complete Reference

</ st at us>

For many more examples of svn status, see the section called “ See an overview of your changes’.

327

Subversion Complete Reference

Name
svn switch (sw) — Update working copy to a different URL.

Synopsis
svn switch URL[@EGREV] [PATH|

switch --rel ocate FROM TO [PATH. . .]

Description

The first variant of this subcommand (without the - - r el ocat e option) updates your working copy to point to anew URL. This
is the Subversion way to make a working copy begin tracking a new branch. If specified, PEGREV determines in which revision
the target isfirst looked up. See the section called “ Traversing Branches” for an in-depth ook at switching.

Beginning with Subversion 1.7, the svn switch command will demand by default that the URL to which you are
/ switching your working copy shares a common ancestry with item that the working copy currently reflects. You can
override this behavior by specifying the- - i gnor e- ancest ry option.

If - - f or ce isused, unversioned obstructing paths in the working copy do not automatically cause afailure if the switch attempts
to add the same path. If the obstructing path is the same type (file or directory) as the corresponding path in the repository, it be-
comes versioned but its contents are left untouched in the working copy. This means that an obstructing directory's unversioned
children may also obstruct and become versioned. For files, any content differences between the obstruction and the repository are
treated like alocal modification to the working copy. All properties from the repository are applied to the obstructing path.

As with most subcommands, you can limit the scope of the switch operation to a particular tree depth using the - - dept h option.
Alternatively, you can usethe - - set - dept h option to set anew “sticky” working copy depth on the switch target.

The - - rel ocat e option is deprecated as of Subversion 1.7. Use svn relocate (described in svn relocate) to perform working
copy relocation instead.

Options

--accept ACTI ON
--depth ARG

--di ff3-cmd CVD
--force
--ignore-ancestry
--ignore-externals
--quiet (-q)
--relocate
--revision (-r) REV
--set-depth ARG

Examples

If you're currently inside the directory vendor s, which was branched to vendor s-wi t h-fi x, and you'd like to switch your
working copy to that branch:

$ svn switch http://svn.red-bean. conlrepos/branches/vendors-with-fix .

328

Subversion Complete Reference

nypr oj / f oo. t xt
nmypr oj / bar .t xt
nmyproj/ baz.c
nmypr oj / qux. c
pdated to revision 31.

cCccCccc

To switch back, just provide the URL to the location in the repository from which you originally checked out your working copy:

$ svn switch http://svn.red-bean. conlrepos/trunk/vendors .
U nmypr oj / f oo. t xt

U nmypr oj / bar. t xt

U nmyproj / baz.c

U nmypr oj / qux. c

Updated to revision 31.

Y ou can switch just part of your working copy to a branch if you don't want to switch your entire working copy, but
this is not generally recommended. It's too easy to forget that you've done this and wind up accidentally making and
committing changes both to the switched and unswitched portions of your tree.

329

Subversion Complete Reference

Name

svn unlock — Unlock working copy paths or URLSs.
Synopsis

svn unl ock TARGET. ..

Description

Unlock each TARCET. If any TARGET islocked by another user or no valid lock token exists in the working copy, print a warning
and continue unlocking the rest of the TARGETS. Use - - f or ce to break alock belonging to another user or working copy.

Options

--force
--targets FI LENAME

Examples

Unlock two filesin your working copy:

$ svn unl ock tree.jpg house.|jpg
"tree.jpg’ unlocked.
"house. j pg' unl ocked.

Unlock afile in your working copy that is currently locked by another user:

$ svn unlock tree.jpg

svn: E195013: 'tree.jpg" is not locked in this working copy
$ svn unlock --force tree.jpg

"tree.jpg' unlocked.

Unlock afile without aworking copy:

$ svn unlock http://svn.red-bean. comrepos/test/tree.jpg
"tree.jpg unl ocked.

For further details, see the section called “Locking”.

330

Subversion Complete Reference

Name
svn update (up) — Update your working copy.

Synopsis

svn update [PATH. ..]

Description

svn update brings changes from the repository into your working copy. If no revision is given, it brings your working copy up to
date with the HEAD revision. Otherwise, it synchronizes the working copy to the revision given by the- - r evi si on (- r) option.
As part of the synchronization, svn update also removes any stale locks (see the section called “Sometimes You Just Need to
Clean Up”) found in the working copy.

For each updated item, it prints a line that starts with a character reporting the action taken. These characters have the following
meaning:

A

Added
B

Broken lock (third column only)
D

Deleted
U

Updated
C

Conflicted
G

Merged
E

Existed

A character in the first column signifies an update to the actual file, whereas updates to the file's properties are shown in the second
column. Lock information is printed in the third column.

As with most subcommands, you can limit the scope of the update operation to a particular tree depth using the - - dept h option.
Alternatively, you can use the - - set - dept h option to set a new “ sticky” working copy depth on the update target.

Options

--accept ACTI ON
--changelist (--cl) ARG
--depth ARG

--di ff3-cmd CMVD
--editor-cnd CVD
--force
--ignore-externals
--parents

331

Subversion Complete Reference

--quiet (-0q)
--revision (-r) REV
--set-depth ARG

Examples

Pick up repository changes that have happened since your last update:

$ svn update

Updating '.":

A newdi r/ toggl e. c
A newdi r/ di scl ose. c
A newdi r/ | aunch. c

D newdi r / READVE
Updated to revision 32.

You can aso “update” your working copy to an older revision (Subversion doesn't have the concept of “sticky” files like CVS
does; see Appendix B, Subversion for CVSUsers):

$ svn update -r30
Updating '."':

A newdi r / READVE

D newdi r/ toggl e. c

D newdi r/ di scl ose. c
D newdi r/ | aunch. ¢

] f oo. c

Updated to revision 30.

If you want to examine an older revision of a single file, you may want to use svn cat instead—it won't change your
_} working copy.

svn update is also the primary mechanism used to configure sparse working copies. When used with the - - set - dept h, the up-
date operation will omit or reenlist individual working copy members by modifying their recorded ambient depth to the depth you
specify (fetching information from the repository as necessary). See the section called “ Sparse Directories’ for more about sparse
directories.

Y ou can update multiple targets with a single invocation, and Subversion will not only gracefully skip any unversioned targets you
provideit, but as of Subversion 1.7 will also include a post-update summary of al the updatesit performed:

$ cd ny-projects

$ svn update *

Updating 'calc':

U button.c

] i nteger.c

Updated to revision 394.
Ski pped 'tenpfile.tnp’
Updating 'paint':

A pal ettes.c

332

Subversion Complete Reference

U brushes. c

Updated to revision 60.

Updating 'ziptastic':

At revision 43.

Sunmary of updates:
Updated 'calc' to r394.
Updated 'paint' to r60.
Updated 'ziptastic' to r43.

Summary of conflicts:

s Ski pped paths: 1

333

Subversion Complete Reference

Name
svn upgrade — Upgrade the metadata storage format for aworking copy.

Synopsis
svn upgrade [PATH...]
Description

As new versions of Subversion are released, the format used for the working copy metadata changes to accomodate new features or
fix bugs. Older versions of Subversion would automatically upgrade working copies to the new format the first time the working
copy was used by the new version of the software. Beginning with Subversion 1.7, working copy upgrades must be explicitly per-
formed at the user's request. svn upgrade is the subcommand used to trigger that upgrade process.

Options

--quiet (-0q)

Examples

If you attempt to use Subversion 1.7 on aworking copy created with an older version of Subversion, you will see an error:

$ svn status

svn: E155036: Pl ease see the 'svn upgrade' comand

svn: E155036: Working copy '/hone/sally/project' is too old (fornat 10, create
g by Subversion 1.6)

Use the svn upgrade command to upgrade the working copy to the most recent metadata format supported by your version of Sub-
version.

$ svn upgrade
Upgraded '.'
Upgr aded
Upgr aded
Upgr aded '
Upgr aded '
Upgr aded '
Upgr aded '
Upgr aded '
Upgr aded '
$ svn stat
A
A
A

2>

SQEE 222222
£em QUQOTRE®
:gg_’ @ Tim
(0] o

>

QD

i dv)

334

Subversion Complete Reference

Notice that svn upgrade preserved the local modifications present in the working copy at the time of the upgrade, which were in-
troduced by the version of Subversion previously used to manipulate this working copy.

As was the case with automatically upgraded working copies in the past, explicitly upgraded working copies will be
unusable by older versions of Subversion, too.

svnadmin—Subversion Repository Administration

svnhadmin is the administrative tool for monitoring and repairing your Subversion repository. For detailed information on reposit-
ory administration, see the maintenance section for the section called “ svnadmin”.

Since svnadmin works via direct repository access (and thus can only be used on the machine that holds the repository), it refersto
the repository with a path, not a URL.

svnadmin Options

Optionsin svnadmin are global, just asthey arein svn:

- - bdb- 1 og- keep
(Berkeley DB-specific.) Disable automatic log removal of database logfiles. Having these logfiles around can be convenient if
you need to restore from a catastrophic repository failure.

- - bdb-t xn- nosync
(Berkeley DB-specific.) Disables fsync when committing database transactions. Used with the svnadmin create command to
create a Berkeley DB-backed repository with DB_ TXN _NOSYNC enabled (which improves speed but has some risks associ-
ated with it).

- - bypass- hooks
Bypass the repository hook system.

- - bypass- prop-validation
When loading a dump file, disable the logic which validates property values.

--cl ean-1ogs
Remove unused Berkeley DB logs.

--config-dir DR
Instructs Subversion to read configuration information from the specified directory instead of the default location
(. subver si on inthe user's home directory).

--deltas
When creating a repository dump file, specify changes in versioned properties and file contents as deltas against their previous
state.

--fs-type ARG
When creating arepository, use ARG as the requested filesyste type. ARG may be either bdb or f sf s.

--force-uuid
By default, when loading data into a repository that already contains revisions, svnadmin will ignore the UUID from the
dump stream. This option will cause the repository's UUID to be set to the UUID from the stream.

--ignore-uuid
By default, when loading data into an empty repository, svnadmin will set the repository's UUID to the UUID from the dump
stream. This option will cause the UUID from the stream to be ignored.

335

Subversion Complete Reference

--increnental
Dump arevision only as a diff against the previous revision, instead of the usual fulltext.

--menory-cache-si ze (- M ARG
Configures the size (in Megabytes) of the extra in-memory cache used to minimize redundant operations. The default value is
16. (This cacheisused for FSFS-backed repositories only.)

--parent-dir DR
When loading a dump file, root paths at DI Rinstead of / .

--pre-1.4-conpatible
When creating a new repository, use aformat that is compatible with versions of Subversion earlier than Subversion 1.4.

--pre-1.5-conpatible
When creating a new repository, use aformat that is compatible with versions of Subversion earlier than Subversion 1.5.

--pre-1.6-conpatible
When creating a new repository, use aformat that is compatible with versions of Subversion earlier than Subversion 1.6.

--revision(-r)ARG
Specify a particular revision to operate on.

--quiet (-q)
Do not show normal progress—show only errors.

- - use- post - comm t - hook
When loading a dump file, runs the repository's post - conm t hook after finalizing each newly loaded revision.

- - use- post - r evpr op- change- hook
When changing a revision property, runs the repository's post - r evpr op- change hook after changing the revision prop-
erty.

--use-pre-conmit-hook
When loading a dump file, runs the repository's pr e- conmi t hook before finalizing each newly loaded revision. If the hook
fails, aborts the commit and terminates the load process.

--use- pre-revprop-change- hook
When changing a revision property, runs the repository's pr e- r evpr op- change hook before changing the revision prop-
erty. If the hook fails, aborts the modification and terminates.

--wai t

For operations which require exclusive repository access, wait until the requisite repository lock has been obtained instead of
immediately erroring out when it cannot be.

svnadmin Subcommands

Here are the various subcommands for the svnadmin program.

336

Subversion Complete Reference

Name
svhadmin crashtest — Simulate a process that crashes.

Synopsis

svnadm n crasht est REPOS_PATH

Description

Open the repository at REPOS_PATH, then abort, thus simulating a process that crashes while holding an open repository handle.
Thisis used for testing automatic repository recovery (a new feature in Berkeley DB 4.4). It's unlikely that you'll need to run this
command.

Options

None

Examples

$ svnadm n crashtest /var/svn/repos
Aborted

Exciting, isn't it?

337

Subversion Complete Reference

Name

svhadmin create — Create anew, empty repository.

Synopsis
svnhadnmi n create REPOS_PATH
Description

Create a new, empty repository at the path provided. If the provided directory does not exist, it will be created for you.1 As of Sub-
version 1.2, svnadmin creates new repositories with the FSFS filesystem backend by defaullt.

While svnadmin create will create the base directory for a new repository, it will not create intermediate directories. For example,
if you have an empty directory named / var/ svn, creating / var/ svn/ repos will work, while attempting to create /

var/ svn/ subdi rect ory/ r epos will fail with an error. Also, keep in mind that, depending on where on your system you are
creating your repository, you might need to run svnadmin create as a user with elevated privileges (such asther oot user).

Options

- - bdb-1 og- keep

- - bdb-t xn- nosync
--config-dir DIR
--fs-type ARG
--pre-1.4-conpatibl e
--pre-1.5-conpatible
--pre-1.6-conpatible

Examples

Creating a new repository is this easy:

$ cd /var/svn
$ svnadnmin create repos

In Subversion 1.0, a Berkeley DB repository is always created. In Subversion 1.1, a Berkeley DB repository is the default reposit-
ory type, but an FSFS repository can be created using the - - f s- t ype option:

$ cd /var/svn
$ svnadm n create repos --fs-type fsfs
$

1Remember, svnadmin works only with local paths, not URLS.

338

Subversion Complete Reference

Name
svhadmin deltify — Deltify changed pathsin arevision range.

Synopsis
svhadmin deltify [-r LOAER[: UPPER]] REPOS_PATH
Description

svnadmin deltify exists in current versions of Subversion only for historical reasons. This command is deprecated and no longer
needed.

It dates from a time when Subversion offered administrators greater control over compression strategies in the repository. This
turned out to be alot of complexity for very little gain, and this “feature” was deprecated.

Options

--menory-cache-size (-M ARG

--quiet (-q)
--revision (-r) ARG

339

Subversion Complete Reference

Name

svhadmin dump — Dump the contents of the filesystem to st dout .

Synopsis
svnadm n dunp REPCS PATH [-r LOWER : UPPER]] [--increnental] [--deltas]

Description

Dump the contents of the filesystem to st dout in a“dump file” portable format, sending feedback to st der r . Dump revisions
LOVER rev through UPPER rev. If no revisions are given, dump al revision trees. If only LOAER is given, dump that one revision
tree. See the section called “Migrating Repository Data Elsewhere” for a practical use.

By default, the Subversion dump stream contains a single revision (thefirst revision in the requested revision range) in which every
file and directory in the repository in that revision is presented as though that whole tree was added at once, followed by other revi-
sions (the remainder of the revisions in the requested range), which contain only the files and directories that were modified in
those revisions. For a modified file, the complete full-text representation of its contents, as well as all of its properties, are presen-
ted in the dump file; for adirectory, all of its properties are presented.

Two useful options modify the dump file generator's behavior. Thefirstisthe- - i ncr ement al option, which simply causes that
first revision in the dump stream to contain only the files and directories modified in that revision, instead of being presented as the
addition of anew tree, and in exactly the same way that every other revision in the dump file is presented. Thisis useful for gener-
ating arelatively small dump file to be loaded into another repository that already has the files and directories that exist in the ori-
ginal repository.

The second useful optionis- - del t as. This option causes svnadmin dump to, instead of emitting full-text representations of file
contents and property lists, emit only deltas of those items against their previous versions. This reduces (in some cases, drastically)
the size of the dump file that svnadmin dump creates. There are, however, disadvantages to using this option—deltified dump
files are more CPU-intensive to create, cannot be operated on by svndumpfilter, and tend not to compress as well as their nondel-
tified counterparts when using third-party tools such as gzip and bzip2.

Options

--deltas

--increnental
--menory-cache-size (-M ARG
--quiet (-q)

--revision (-r) ARG

Examples

Dump your whole repository:

$ svnadmi n dunp /var/svn/repos > full.dunp
Dunped revi sion 0.
Dunped revi sion 1.
Dunped revi sion 2.

* % X

Incrementally dump a single transaction from your repository:

Subversion Complete Reference

$ svnadm n dunp /var/svn/repos -r 21 --increnental > incr.dunp
* Dunped revision 21.

341

Subversion Complete Reference

Name

svnadmin help (h, ?) — Help!
Synopsis

svnhadnmi n hel p [SUBCOWAND. . .]

Description

This subcommand is useful when you're trapped on a desert island with neither a Net connection nor a copy of this book.

342

Subversion Complete Reference

Name
svhadmin hotcopy — Make a hot copy of arepository.

Synopsis
svnadmi n hot copy REPOS_PATH NEW REPCS_PATH

Description

This subcommand makes a full “hot” backup of your repository, including all hooks, configuration files, and, of course, database
files. If you pass the - - cl ean- | ogs option, svnadmin will perform a hot copy of your repository, and then remove unused
Berkeley DB logs from the original repository. Y ou can run this command at any time and make a safe copy of the repository, re-
gardless of whether other processes are using the repository.

Options

--cl ean-1o0gs

As described in the section called “Berkeley DB”, hot-copied Berkeley DB repositories are not portable across oper-
ating systems, nor will they work on machines with a different “endianness’ than the machine where they were cre-

ated.

Subversion Complete Reference

Name

svhadmin list-dblogs — Ask Berkeley DB which logfiles exist for a given Subversion repository (applies only to repositories using
the bdb backend).

Synopsis
svnadmin |ist-dbl ogs REPOS_PATH
Description

Berkeley DB creates logs of all changes to the repository, which alow it to recover in the face of catastrophe. Unless you enable
DB _LOG AUTOREMOVE, the logfiles accumulate, although most are no longer used and can be deleted to reclaim disk space. See
the section called “Managing Disk Space” for more information.

Subversion Complete Reference

Name
svnadmin list-unused-dblogs — Ask Berkeley DB which logfiles can be safely deleted (applies only to repositories using the bdb

backend).

Synopsis

svnadmi n |ist-unused-dbl ogs REPOS_PATH

Description

Berkeley DB creates logs of all changes to the repository, which alow it to recover in the face of catastrophe. Unless you enable

DB _LOG AUTOREMOVE, the logfiles accumulate, although most are no longer used and can be deleted to reclaim disk space. See
the section called “Managing Disk Space” for more information.

Examples

Remove al unused logfiles from the repository:

$ svnadmi n |ist-unused-dbl ogs /var/svn/repos
/var/svn/repos/| og. 0000000031
/var/svn/repos/| og. 0000000032
/var/svn/repos/| og. 0000000033

$ svnadm n |ist-unused-dbl ogs /var/svn/repos | xargs rm
di sk space recl ai ned!

Subversion Complete Reference

Name

svhadmin load — Read a repository dump stream from st di n.

Synopsis
svnadnmi n | oad REPCS_PATH
Description

Read a repository dump stream from st di n, committing new revisions into the repository’s filesystem. Send progress feedback to
st dout .

Options

- - bypass- prop-validation
--force-uuid

--ignore-uuid
--menory-cache-size (-M ARG
--parent-dir DR

--quiet (-q)

- - use- post - commi t - hook
--use-pre-conmit-hook

Examples

This shows the beginning of loading a repository from abackup file (made, of course, with svnadmin dump):

$ svnadm n |l oad /var/svn/restored < repos-backup
<<< Started new txn, based on original revision 1
* adding path : test ... done.
* adding path : test/a ... done.

Or if you want to load into a subdirectory:

$ svnadmn load --parent-dir new subdir/for/project \
/var/svn/restored < repos-backup
<<< Started new txn, based on original revision 1
* adding path : test ... done.
* adding path : test/a ... done.

Newer versions of Subversion have grown more strict regarding the format of the values of Subversion's own built-in properties.
Of course, properties created with older versions of Subversion wouldn't have benefitted from that strictness, and as such might be
improperly formatted. Dump streams carry property values as-is, so using Subversion 1.7 to load dump streams created from repos-
itories with ill-formatted property values will, by default, trigger a validation error. There are several workaround for this problem.
First, you can manually repair the problematic property values in the source repository and recreate the dump stream. Or, you can

346

Subversion Complete Reference

manually tweak the dump stream itself to fix those property values. Finaly, if you'd rather not deal with the problem right now, use
the- - bypass- pr op-val i dat i on option with svnadmin load.

347

Subversion Complete Reference

Name

svnadmin Islocks — Print descriptions of all locks.

Synopsis
svnadni n | sl ocks REPOS_PATH [PATH | N- REPOS]
Description

Print descriptions of all locks in repository REPOS _PATH underneath the path PATH- | N- REPCS. If PATH- | N- REPCS is not
provided, it defaults to the root directory of the repository.

Options
None

Examples

Thisliststhe one locked file in the repository at / var / svn/ r epos:

$ svnadm n | sl ocks /var/svn/repos

Path: /tree.jpg

UUI D Token: opaquel ockt oken: ab00ddf 0- 6af b- 0310- 9cd0- dda813329753
Owner: harry

Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005)

Expi res:

Commrent (1 line):

Rewor k t he uppernost branches on the bald cypress in the foreground.

Subversion Complete Reference

Name

svnadmin |stxns — Print the names of all uncommitted transactions.

Synopsis
svnadmi n | st xns REPOS_PATH
Description

Print the names of al uncommitted transactions. See the section called “Removing dead transactions” for information on how un-
committed transactions are created and what you should do with them.

Examples

List al outstanding transactionsin a repository:

$ svnadm n | stxns /var/svn/repos/
1w
1x

349

Subversion Complete Reference

sl\/ln?d[n?ner)ack — Possibly compact the repository into a more efficient storage model.
Synopsis

svnadnmi n pack REPOS_PATH

Description

See the section called “ Packing FSFS filesystems” for more information.

Options

None

350

Subversion Complete Reference

Name

svhadmin recover — Bring a repository database back into a consistent state (applies only to repositories using the bdb backend).
In addition, if r epos/ conf / passwd does not exist, it will create a default passwordfile .

Synopsis

svnadnmi n recover REPOS_PATH

Description

Run this command if you get an error indicating that your repository needs to be recovered.

Options

--wai t

Examples

Recover a hung repository:

$ svnadm n recover /var/svn/repos/
Repository | ock acquired.
Pl ease wait; recovering the repository may take sone tine...

Recovery conpl et ed.
The | atest repos revision is 34.

Recovering the database requires an exclusive lock on the repository. (Thisis a “database lock”; see the sidebar The Three Mean-
ings of “Lock”.) If another process is accessing the repository, then svnadmin recover will error:

$ svnadmi n recover /var/svn/repos
svn: E165000: Failed to get exclusive repository access; perhaps another proce
ss such as httpd, svnserve or svn has it open?

The- - wai t option, however, will cause svnadmin recover to wait indefinitely for other processes to disconnect:

$ svnadmi n recover /var/svn/repos --wait
Waiting on repository | ock; perhaps another process has it open?

time goes by...

Repository | ock acquired.
Pl ease wait; recovering the repository nmay take sone tine...

351

Subversion Complete Reference

Recovery conpl et ed.
The | atest repos revision is 34.

352

Subversion Complete Reference

Name

svnadmin rmlocks — Unconditionally remove one or more locks from arepository.

Synopsis

svnhadm n rnl ocks REPOS_PATH LOCKED PATH. . .
Description

Remove one or more locks from each LOCKED PATH.
Options

None

Examples

Thisdeletesthelocksontr ee. j pg and house. j pg intherepository at/ var / svn/ r epos:

$ svnadm n rm ocks /var/svn/repos tree.jpg house.jpg
Removed | ock on '/tree.jpg.
Renoved | ock on '/ house. | pg.

353

Subversion Complete Reference

Name

svhadmin rmtxns — Delete transactions from a repository.

Synopsis
svnadm n rntxns REPOS_PATH TXN_NAME. . .

Description

Delete outstanding transactions from arepository. Thisis covered in detail in the section called “Removing dead transactions’.

Options

--quiet (-q)

Examples

Remove named transactions:

$ svnadm n rntxns /var/svn/repos/ 1w 1x

Fortunately, the output of Istxns works great as the input for rmtxns:

$ svnadm n rntxns /var/svn/repos/ ~svnadmin |stxns /var/svn/repos/”

This removes al uncommitted transactions from your repository.

354

Subversion Complete Reference

Name
svhadmin setlog — Set the log message on arevision.

Synopsis

svhadm n setl og REPOS_PATH -r REVI SI ON FI LE

Description
Set the log message on revision REVI SI ON to the contents of FI LE.

Thisis similar to using svn propset with the - - r evpr op option to set the svn: | og property on arevision, except that you can
also use the option - - bypass- hooks to avoid running any pre- or post-commit hooks, which is useful if the modification of re-
vision properties has not been enabled in the pr e- r evpr op- change hook.

Revision properties are not under version control, so this command will permanently overwrite the previous log mes-
sage.

Options

- - bypass- hooks
--revision (-r) ARG

Examples

Set the log message for revision 19 to the contents of the file s g:

$ svnadm n setlog /var/svn/repos/ -r 19 nsg

355

Subversion Complete Reference

Name

svhadmin setrevprop — Set a property on arevision.

Synopsis

svnadmi n setrevprop REPCS PATH -r REVI SI ON NAMVE FI LE

Description

Set the property NAME on revision REVI SI ON to the contents of FI LE. Use - - use- pr e-r evpr op- change- hook or -
- use- post - r evpr op- change- hook to trigger the revision property-related hooks (e.g., if you want an email notification

sent from your post - r evpr op- change- hook).

Options

--revision (-r) ARG
- - use- post - r evpr op- change- hook
--use- pre-revprop- change- hook

Examples

The following sets the revision property r eposi t or y- phot o to the contents of thefile sandwi ch. png:

$ svnadm n setrevprop /var/svn/repos -r 0 repository-photo sandw ch. png

Asyou can see, svnadmin setrevprop has ho output upon success.

356

Subversion Complete Reference

Name
svhadmin setuuid — Reset the repository UUID.

Synopsis
svnhadm n setuui d REPOS_PATH [NEW UUI D]

Description

Reset the repository UUID for the repository located at REPOS _PATH. If NEW UUI D is provided, use that as the new repository
UUID; otherwise, generate a brand-new UUID for the repository.

Options
None

Examples

If you've svnsynced / var/ svn/ r epos to/ var/ svn/repos- newand intend to use r epos- new as your canonical reposit-
ory, you may want to change the UUID for r epos- newto the UUID of r epos so that your users don't have to check out a new
working copy to accommodate the change:

$ svnadm n setuuid /var/svn/repos-new 2109a8dd- 854f - 0410- ad31- d604008985ab

Asyou can see, svnadmin setuuid has no output upon success.

357

Subversion Complete Reference

Name
svhadmin upgrade — Upgrade a repository to the latest supported schema version.

Synopsis

svnadm n upgrade REPOS PATH

Description

Upgrade the repository located at REPOS _PATH to the latest supported schema version.

This functionality is provided as a convenience for repository administrators who wish to make use of new Subversion functional-
ity without having to undertake a potentially costly full repository dump and load operation. As such, the upgrade performs only

the minimum amount of work needed to accomplish this while still maintaining the integrity of the repository. While a dump and
subsequent load guarantee the most optimized repository state, svnadmin upgrade does not.

Q Y ou should always back up your repository before upgrading.

Options
None
Examples

Upgrade the repository at path / var / r epos/ svn:

$ svnadmi n upgrade /var/repos/svn
Repository | ock acquired.
Pl ease wait; upgrading the repository nmay take sone tine...

Upgr ade conpl et ed.

358

Subversion Complete Reference

Name
svnadmin verify — Verify the data stored in the repository.

Synopsis

svnhadnmi n verify REPOS_PATH

Description

Run this command if you wish to verify the integrity of your repository. This basically iterates through all revisions in the reposit-
ory by internally dumping all revisions and discarding the output—it's a good idea to run this on a regular basis to guard against
latent hard disk failures and “bitrot.” If this command fails—which it will do at the first sign of a problem—that means your repos-
itory has at least one corrupted revision, and you should restore the corrupted revision from a backup (you did make a backup,
didn't you?).

Options

--menory-cache-size (-M ARG

--quiet (-q)
--revision (-r) ARG

Examples

Verify ahung repository:

$ svnadmi n verify /var/svn/repos/
* Verified revision 1729.

svnlook—Subversion Repository Examination

svnlook is a command-line utility for examining different aspects of a Subversion repository. It does not make any changes to the
repository—it's just used for “ peeking.” svnlook istypically used by the repository hooks, but a repository administrator might find
it useful for diagnostic purposes.

Since svnlook works via direct repository access (and thus can be used only on the machine that holds the repository), it refers to
the repository with a path, not aURL.

If no revision or transaction is specified, svnlook defaultsto the youngest (most recent) revision of the repository.

svnlook Options

Options in svnlook are global, just as they are in svn and svnadmin; however, most options apply to only one subcommand since
the functionality of svnlook is (intentionally) limited in scope:

--copy-info
Causes svnlook changed to show detailed copy source information.

359

Subversion Complete Reference

--diff-copy-from
Print differences for copied items against the copy source.

- - extensi ons (- x) ARG
Specifies customizations which Subversion should make when performing difference calculations. Valid extensions include:

- -i gnor e- space- change (- b)
Ignore changes in the amount of white space.

--ignore-all-space (-w
Ignore all white space.

--ignore-eol -style
Ignore changesin EOL (end-of-line) style.

--show c-function (-p)
Show C function namesin the diff output.

--unified(-u)
Show three lines of unified diff context.

The default valueis- u.

Note that when Subversion is configured to invoke an external diff command, the value of the - - ext ensi on (- x) option
isn't restricted to the previously mentioned options, but may be any additional arguments which Subversion should pass to that
command. If you wish to pass multiple arguments, you must enclose all of them in quotes.

--full-paths
Causes svnlook treeto display full pathsinstead of hierarchical, indented path components.

--limt (-1)ARG
Limit output to a maximum number of ARGitems.

--no-di ff-del eted
Prevents svnlook diff from printing differences for deleted files. The default behavior when afile is deleted in a transaction/revi-
sionisto print the same differences that you would see if you had left the file but removed all the content.

--no-di ff-added
Prevents svnlook diff from printing differences for added files. The default behavior when you add afile is to print the same
differences that you would see if you had added the entire contents of an existing (empty) file.

--non-recursive (-N)
Operate on asingle directory only.

--revision(-r)
Specifies a particular revision number that you wish to examine.

--revprop
Operates on arevision property instead of a property specific to afile or directory. This option requires that you also pass are-
visionwiththe- - r evi si on (- r) option.

--transaction(-t)
Specifies a particular transaction 1D that you wish to examine.

--showids
Shows the filesystem node revision IDs for each path in the filesystem tree.

--verbose (-v)
Be verbose. When used with svnlook proplist, for example, this causes Subversion to display not just the list of properties, but

360

Subversion Complete Reference

their values also.

--xni

svnlook Subcommands

Here are the various subcommands for the svnlook program.

361

Subversion Complete Reference

Name

svnlook author — Print the author.

Synopsis

svnl ook aut hor REPOS_PATH

Description

Print the author of arevision or transaction in the repository.

Options

--revision (-r)
--transaction (-t)

Examples

svnlook author is handy, but not very exciting:

$ svnl ook author -r 40 /var/svn/repos
sal ly

362

Subversion Complete Reference

Name

svnlook cat — Print the contents of afile.

Synopsis
svnl ook cat REPOS_PATH PATH | N_REPCS
Description

Print the contents of afile.

Options

--revision (-r)
--transaction (-t)

Examples

This shows the contents of afilein transaction ax8, located at / t r unk/ README:

$ svnl ook cat -t ax8 /var/svn/repos /trunk/ READVE

Subversion, a version control system

$Last ChangedDat e: 2003-07-17 10:45: 25 -0500 (Thu, 17 Jul 2003) $
Cont ent s:

. A FEW PO NTERS
1. DOCUMENTATI ON
[11. PARTICIPATI NG I N THE SUBVERSI ON COVMUNI TY

363

Subversion Complete Reference

Name
svnlook changed — Print the paths that were changed.

Synopsis
svnl ook changed REPOS_PATH

Description

Print the paths that were changed in a particular revision or transaction, as well as “svn update-style” status letters in the first two
columns:

CA
Item added to repository

) D)
Item deleted from repository

U
File contents changed

U
Properties of item changed; note the leading underscore

Uy
File contents and properties changed

Files and directories can be distinguished, as directory paths are displayed with atrailing “/ ” character.

Options

--copy-info
--revision (-r)
--transaction (-t)

Examples

This shows alist of all the changed files and directoriesin revision 39 of atest repository. Note that the first changed item isadir-
ectory, as evidenced by thetrailing/ :

$ svnl ook changed -r 39 /var/svn/repos
A trunk/vendors/deli/
A trunk/vendors/deli/chips.txt
A trunk/vendors/deli/sandw ch. txt
A trunk/vendors/deli/ pickle.txt
U trunk/vendors/ baker/ bagel .t xt

U trunk/vendors/baker/croissant.txt
UU trunk/vendors/ baker/pretzel.txt

t runk/ vendor s/ baker/ baguette. t xt

364

Subversion Complete Reference

Here's an example that shows arevision in which afile was renamed:

$ svnl ook changed -r 64 /var/svn/repos
A trunk/vendors/baker/toast.txt
D trunk/vendors/ baker/bread. t xt

Unfortunately, nothing in the preceding output reveals the connection between the deleted and added files. Use the -
- copy- i nf o option to make this relationship more apparent:

$ svnl ook changed -r 64 --copy-info /var/svn/repos
A + trunk/vendors/ baker/toast.txt

(from trunk/vendors/ baker/bread. txt:r63)
D trunk/vendors/baker/ bread.t xt

365

Subversion Complete Reference

Name

svnlook date — Print the datestamp.

Synopsis

svnl ook dat e REPOS_PATH

Description

Print the datestamp of arevision or transaction in arepository.

Options

--revision (-r)
--transaction (-t)

Examples

This shows the date of revision 40 of atest repository:

$ svnl ook date -r 40 /var/svn/repos/
2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)

366

Subversion Complete Reference

Name

svnlook diff — Print differences of changed files and properties.

Synopsis

svnl ook di ff REPOS_PATH

Description

Print GNU-style differences of changed files and propertiesin arepository.

Options

--diff-copy-from
--no-diff-added
--no-di ff-del eted
--revision (-r)
--transaction (-t)
--extensions (-x) ARG

Examples

This shows a newly added (empty) file, a deleted file, and a copied file:

$ svnlook diff -r 40 /var/svn/repos/
Copied: egg.txt (fromrev 39, trunk/vendors/deli/pickle.txt)

Added: trunk/vendors/deli/soda.txt

Modi fi ed: trunk/vendors/deli/sandw ch. t xt

--- trunk/vendors/deli/sandw ch.txt (original)

+++ trunk/vendors/deli/sandw ch.txt 2003-02-22 17:45:04. 000000000 -0600
@-0,0 +1 @@

+Don't forget the mayo!

Modi fi ed: trunk/vendors/deli/logo.jpg

(Binary files differ)

Del et ed: trunk/vendors/deli/chips.txt

Del eted: trunk/vendors/deli/pickle.txt

If afile has anontextual svn: m ne-t ype property, the differences are not explicitly shown.

367

Subversion Complete Reference

Name

svnlook dirs-changed — Print the directories that were themselves changed.
Synopsis

svnl ook dirs-changed REPOS_PATH

Description

Print the directories that were themselves changed (property edits) or whose file children were changed.

Options

--revision (-r)
--transaction (-t)

Examples

This shows the directories that changed in revision 40 in our sample repository:

$ svnl ook dirs-changed -r 40 /var/svn/repos
trunk/vendors/deli/

368

Subversion Complete Reference

Name

svnlook filesize — Print the size (in bytes) of aversioned file.

Synopsis
svnl ook fil esize REPOS_PATH PATH_ | N_REPCS

Description

Print the file size (in bytes) of the file located at PATH | N_REPGCS in the HEAD revision of the repository identified by RE-
POS_PATH as a base-10 integer followed by an end-of-line character. Usethe--revi sion (-r)and--transaction (-t)
options to specify aversion of the file other than HEAD whose file size you wish to display.

Options

--revision (-r)
--transaction (-t)

Examples

The following demonstrates how to display the size of the t r unk/ vendor s/ del i / soda. t xt file as it appeared in revision
40 of our sample repository:

$ svnlook filesize -r 40 /var/svn/repos trunk/vendors/deli/soda.txt
23
$

369

Subversion Complete Reference

Name

svnlook help (h, ?) — Help!

Synopsis

Al so svnl ook -h and svnl ook -?.
Description

Displays the help message for svnlook. This command, like its brother, svn help, is also your friend, even though you never cal it
anymore and forgot to inviteit to your last party.

Options

None

370

Subversion Complete Reference

Name
svnlook history — Print information about the history of a path in the repository (or the root directory if no path is supplied).

Synopsis
svnl ook history REPOS_PATH [PATH_ | N_REPCS]
Description

Print information about the history of a path in the repository (or the root directory if no path is supplied).

Options

--limt (-1) ARG
--revision (-r)
--show i ds

Examples

This shows the history output for the path / br anches/ bookst or e as of revision 13 in our sample repository:

$ svnl ook history -r 13 /var/svn/repos /branches/bookstore --showids
REVI S| ON PATH <I D>

13 / branches/ bookst ore <1.1.r13/390>

12 / branches/ bookstore <1.1.r12/413>

11 / branches/ bookstore <1.1.r11/0>

9 /trunk <1.0.r9/551>
8 /trunk <1.0.r8/131357096>
7 /trunk <1.0.r7/294>
6 /trunk <1.0.r6/353>
5 /trunk <1.0.r5/ 349>
4 /trunk <1.0.r4/332>
3 /trunk <1.0.r3/335>
2 /trunk <1.0.r2/ 295>
1 /trunk <1.0.r1/532>

371

Subversion Complete Reference

Name
svnlook info— Print the author, datestamp, log message size, and log message.

Synopsis

svnl ook info REPOS_PATH

Description

Print the author, datestamp, log message size (in bytes), and log message, followed by a newline character.

Options

--revision (-r)
--transaction (-t)

Examples

This shows the info output for revision 40 in our sample repository:

$ svnlook info -r 40 /var/svn/repos

sal ly

2003- 02-22 17:44:49 -0600 (Sat, 22 Feb 2003)
16

Rear range | unch.

372

Subversion Complete Reference

Name

svnlook lock — If alock exists on a path in the repository, describeit.

Synopsis

svnl ook | ock REPOS_PATH PATH_ | N_REPCS

Description

Print all information available for the lock at PATH | N_REPCS. If PATH_| N_REPGCS is not locked, print nothing.
Options

None

Examples

This describesthe lock on thefilet r ee. | pg:

$ svnl ook lock /var/svn/repos tree.jpg

UUI D Token: opaquel ockt oken: ab00ddf 0- 6af b- 0310- 9¢cd0- dda813329753
Owner: harry

Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005)

Expi res:

Commrent (1 line):

Rewor k t he uppernost branches on the bald cypress in the foreground.

373

Subversion Complete Reference

Name

svnlook log — Print the log message, followed by a newline character.
Synopsis

svnl ook | og REPOS_PATH

Description

Print the log message.

Options

--revision (-r)
--transaction (-t)

Examples

This shows the log output for revision 40 in our sample repository:

$ svnl ook | og /var/svn/repos/
Rear range | unch.

374

Subversion Complete Reference

Name
svnlook propget (pget, pg) — Print the raw value of a property on a path in the repository.

Synopsis

svnl ook propget REPCS PATH PROPNAME [PATH | N REPGCS]
Description

List the value of a property on a path in the repository.

Options

--revision (-r)
--revprop
--transaction (-t)

Examples

This shows the value of the “seasonings’ property on thefile/ t r unk/ sandwi ch in the HEAD revision:

$ svnl ook pg /var/svn/repos seasoni ngs /trunk/sandw ch
nust ar d

375

Subversion Complete Reference

Name

svnlook proplist (plist, pl) — Print the names and values of versioned file and directory properties.

Synopsis
svnl ook proplist REPOS_PATH [PATH_ | N_REPQOS]
Description

List the properties of apath in the repository. With - - ver bose (- v), show the property values too.

Options

--revision (-r)
--revprop
--transaction (-t)
--verbose (-v)

- - xm

Examples

This shows the names of properties set on thefile/ t r unk/ README in the HEAD revision:

$ svnl ook proplist /var/svn/repos /trunk/ READVE
ori gi nal - aut hor
svn: m me-type

Thisisthe same command as in the preceding example, but this time showing the property values as well:

$ svnlook -v proplist /var/svn/repos /trunk/ READVE
original-author : harry
svn:mme-type : text/plain

376

Subversion Complete Reference

Name

svnlook tree — Print the tree.

Synopsis
svnl ook tree REPOS_PATH [PATH_| N_REPQOS]

Description

Print the tree, starting at PATH | N_REPGS (if supplied; at the root of the tree otherwise), optionally showing node revision IDs.

Options

--full-paths
--non-recursive (-N)
--revision (-r)
--showids
--transaction (-t)

Example

This shows the tree output for revision 13 in our sample repository:

$ svnlook tree -r 13 /var/svn/repos
/

t runk/
button.c
Makefil e
i nteger.c

br anches/
bookst or e/

button.c
Makefil e
i nteger.c

Usethe- - show i ds option to include node revision IDs (unique internal identifiers for specific nodes in Subversion's versioned
filesystem implementation):

$ svnlook tree -r 13 /var/svn/repos --showids
/ <0.0.r13/811>
trunk/ <1.0.r9/551>
button.c <2.0.r9/238>
Makefile <3.0.r7/41>
integer.c <4.0.r6/98>
branches/ <5.0.r13/593>
bookstore/ <1.1.r13/390>
button.c <2.1.r12/85>
Makefile <3.0.r7/41>
integer.c <4.1.r13/109>

377

Subversion Complete Reference

For output which lends itself more readily to being parsed by scripts, use the - - f ul | - pat hs option, which causes svnlook to
print the full repository path of each tree item and to not use indentation to indicate hierarchy:

$ svnlook tree -r 13 /var/svn/repos --showids
/ <0.0.r13/811>

trunk/ <1.0.r9/551>

trunk/button.c <2.0.r9/ 238>

trunk/ Makefile <3.0.r7/41>

trunk/integer.c <4.0.r6/98>

branches/ <5.0.r13/593>

br anches/ bookstore/ <1.1.r13/390>

br anches/ bookstore/ button.c <2.1.r12/85>
br anches/ bookst ore/ Makefile <3.0.r7/41>
branches/ bookstore/integer.c <4.1.r13/109>

378

Subversion Complete Reference

Name
svnlook uuid — Print the repository's UUI D.

Synopsis
svnl ook uui d REPOS_PATH
Description

Print the UUI D for the repository. The UUI D is the repository's universal unique identifier. The Subversion client uses this identifi-
er to differentiate between one repository and another.

Options
None

Examples

$ svnl ook uuid /var/svn/repos
e7f elb91- 8cd5- 0310- 98dd- 2f 12e793c5e8

379

Subversion Complete Reference

Name

svnlook youngest — Print the youngest revision number.

Synopsis

svnl ook youngest REPQOS PATH
Description

Print the youngest revision number of arepository.
Options

None

Examples

This shows the youngest revision of our sample repository:

$ svnl ook youngest /var/svn/repos/
42

svnsync—Subversion Repository Mirroring

svnsync is the Subversion remote repository mirroring tool. Put simply, it allows you to replay the revisions of one repository into
another one.

In any mirroring scenario, there are two repositories: the source repository, and the mirror (or “sink™) repository. The source repos-
itory isthe repository from which svnsync pulls revisions. The mirror repository is the destination for the revisions pulled from the
source repository. Each of the repositories may be local or remote—they are only ever addressed by their URLSs.

The svnsync process requires only read access to the source repository; it never attempts to modify it. But obviously, svnsync re-
quires both read and write access to the mirror repository.

To prevent this from happening, it's best if the svnsync process is the only process permitted to modify the mirror re-

Q svnsync is very sensitive to changes made in the mirror repository that weren't made as part of a mirroring operation.
pository.

svnsync Options

Optionsin svnsync are global, just asthey arein svn and svnadmin:

--all ownon-enpty
Disables the verification (which svnsync initialize performs by default) that the repository being initialized is empty of history
version.

--config-dir DR
Instructs Subversion to read configuration information from the specified directory instead of the default location

380

Subversion Complete Reference

. subver si on in the user's home directory).

--config-opti on CONFSPEC

Sets, for the duration of the command, the value of a runtime configuration option. CONFSPEC is a string which specifies the
configuration option namespace, name and value that you'd like to assign, formatted as FI LE:SECTI ON:OPTI ON=[VVALUE].
In this syntax, FI LE and SECTI ON are the runtime configuration file (either conf i g or ser ver s) and the section thereof,
respectively, which contain the option whose value you wish to change. OPTI ON is, of course, the option itself, and VALUE
the value (if any) you wish to assign to the option. For example, to temporarily disable the use of the automatic property set-
ting feature, use - - confi g- opti on=servers: gl obal : http-1ibrary=serf. You can use this option multiple
times to change multiple option values simultaneously.

--di sabl e-| ocki ng
Causes svhsync to bypass its own exclusive access mechanisms and operate on the assumption that its exclusive access to the
mirror repository is being guaranteed through some other, out-of-band mechanism.

- - no- aut h- cache
Prevents caching of authentication information (e.g., username and password) in the Subversion runtime configuration direct-
ories.

--non-interactive
In the case of an authentication failure or insufficient credentials, prevents prompting for credentials (e.g., username or pass-
word). Thisis useful if you're running Subversion inside an automated script and it's more appropriate to have Subversion fail
than to prompt for more information.

--quiet (-q)
Requests that the client print only essential information while performing an operation.

--revision(-r)ARG
Used by svnsync copy-revprops to specify a particular revision or revision range on which to operate.

- - sour ce- passwor d PASSVWD
Specifies the password for the Subversion server from which you are syncing. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

--sour ce- prop- encodi ng ARG
Instructs svnsync to assume that transatable Subversion revision properties found in the source repository are stored using the
character encoding ARG and to transcode those into UTF-8 when copying them into the mirror repository.

- -sour ce- user name NAMVE
Specifies the username for the Subversion server from which you are syncing. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

--steal -1 ock
Causes svnsync to steal, as necessary, the lock which it uses on the mirror repository to ensure exclusive repository access.
(This option should only be used when alock exists in the mirror repository and is known to be stale—that is, when you are
certain that there are no other svnsync processes accessing that repository.)

- - sync- passwor d PASSVWD
Specifies the password for the Subversion server to which you are syncing. If not provided, or if incorrect, Subversion will
prompt you for thisinformation as needed.

- -sync- user name NAMVE
Specifies the username for the Subversion server to which you are syncing. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

--trust-server-cert
Used with - - non-i nt er act i ve to accept any unknown SSL server certificates without prompting.

381

Subversion Complete Reference

svnsync Subcommands

Here are the various subcommands for the svnsync program.

382

Subversion Complete Reference

Name

svnsync copy-revprops — Copy al revision properties for a particular revision (or range of revisions) from the source repository to
the mirror repository.

Synopsis
svnsync copy-revprops DEST URL [SOURCE _URL]

svnsync copy-revprops DEST _URL REV[: REV2]

Description

Because Subversion revision properties can be changed at any time, it's possible that the properties for some revision might be
changed after that revision has already been synchronized to another repository. Because the svnsync synchronize command oper-
ates only on the range of revisions that have not yet been synchronized, it won't notice a revision property change outside that
range. Left asiis, this causes a deviation in the values of that revision's properties between the source and mirror repositories. svn-
sync copy-revprops is the answer to this problem. Use it to resynchronize the revision properties for a particular revision or range
of revisions.

When SOURCE_URL is provided, svnsync will use it as the repository URL which the destination repository is mirroring. Gener-
ally, SOURCE_URL will be exactly the same source URL as was used with the svnsync initialize command when the mirror was
first set up. You may choose, however, to omit SOURCE _URL, in which case svnsync will consult the mirror repository's records
to determine the source URL which should be used.

We strongly recommend that you specify the source URL on the command-line, especially when untrusted users have
write access to the revision O properties which svnsync uses to coordinate its efforts.

Options

--config-dir DIR
--config-opti on CONFSPEC
--di sabl e-1 ocki ng

- - no- aut h-cache
--non-interactive
--quiet (-q)

--revision (-r) ARG
--sour ce- password PASSWD
--sour ce- prop-encodi ng ARG
--sour ce-user name NAVE
--steal -1 ock

--sync- password PASSWD
--sync-user nane NAME
--trust-server-cert

Examples

Resynchronize the revision properties associated with asingle revision (r6):

$ svnsync copy-revprops -r 6 f [Ilvar/svn/repos-mrror \
/1

ile:
http://svn. exanpl e. coni r epos

383

Subversion Complete Reference

Copi ed properties for revision 6.
$

384

Subversion Complete Reference

Name

svnsync help — Help!

Synopsis

svnsync hel p

Description

This subcommand is useful when you're trapped in a foreign prison with neither a Net connection nor a copy of this book, but you
do have alocal Wi-Fi network running and you'd like to sync a copy of your repository over to the backup server that Ira The
Knifeis running over in cell block D.

Options

None

385

Subversion Complete Reference

Name

svnsync info — Print information about the synchronization of a destination repository.

Synopsis
svnsync i nfo DEST_URL

Description

Print the synchronization source URL, source repository UUID and the last revision merged from the source to the destination re-
pository at DEST_URL.

Options

--config-dir DR
--config-option CONFSPEC
- -no- aut h-cache
--non-interactive
--sour ce- password PASSWD
--sour ce-user name NAVE
--sync- password PASSWD
--sync- user name NAVE
--trust-server-cert

Examples

Print the synchronization information of amirror repository:

$ svnsync info file:///var/svn/repos-mrror

Source URL: http://svn.exanpl e.conirepos

Source Repository UUI D e7felb91-8cd5-0310-98dd- 2f 12e793c5e8
;ast Mer ged Revi sion: 47

386

Subversion Complete Reference

Name

svnsync initialize (init) — Initialize amirror repository for synchronization from the source repository.

Synopsis
svnsync initialize MRROR URL SOURCE URL
Description

svnsync initialize verifies that a repository meets the basic requirements of a new mirror repository and records the initial adminis-
trative information that associates the mirror repository with the source repository (specified by SOURCE_URL). Thisis the first
svnsync operation you run on awould-be mirror repository.

Ordinarily, SOURCE_URL isthe URL of the root directory of the Subversion repository you wish to mirror. Subversion 1.5 and
newer allow you to use svnsync for partial repository mirroring, though — simply specify the URL of the source repository subdir-
ectory you wish to mirror as SOURCE_URL.

By default, the af orementioned basic requirements of a mirror are that it allows revision property modifications and that it contains
no version history. However, as of Subversion 1.7, you may now optionally disable the verification that the target repository is
empty using the - - al | ow non- enpt y option. While the use of this option should not become habitual (as it bypasses a valu-
able safeguard mechanism), it does aid in one very common use-case: initializing a copy of arepository as a mirror of the original.
This is especially handy when setting up new mirrors of repositories which contain a large amount of version history. Rather than
initialize a brand new repository as a mirror and then syncronize all of the history into it, administrators will find it significantly
faster to first make a copy of the mature repository (perhaps using svnadmin hotcopy) and then use svnsync initialize -
-allow-non-empty to initialize that copy as amirror which is now already up-to-date with the original.

Options

--all ow non-enpty
--config-dir DIR
--config-opti on CONFSPEC
--di sabl e-1 ocki ng
--no-aut h-cache
--non-interactive
--quiet (-q)
--sour ce- password PASSWD
--sour ce- prop-encodi ng ARG
--sour ce-user name NAVE
--steal -1 ock

--sync- password PASSWD
--sync-user nane NAME
--trust-server-cert

Examples

Fail to initialize amirror repository due to inability to modify revision properties:

$ svnsync initialize file:///var/svn/repos-mrror \

http://svn. exanpl e. coni r epos
svnsync: Repository has not been enabled to accept revision propchanges;
gsk the admnistrator to create a pre-revprop-change hook

387

Subversion Complete Reference

Initialize a repository as a mirror, having aready created a pr e- r evpr op- change hook that permits all revision property
changes:

$ svnsync initialize file:///var/svn/repos-mrror \
http://svn. exanpl e. coni r epos

Copi ed properties for revision O.

388

Subversion Complete Reference

Name

svnsync synchronize (sync) — Transfer al pending revisions from the source repository to the mirror repository.

Synopsis
svnsync synchroni ze DEST_URL [SOURCE_URL]
Description

The svnsync synchronize command does all the heavy lifting of arepository mirroring operation. After consulting with the mirror
repository to see which revisions have already been copied into it, it then begins to copy any not-yet-mirrored revisions from the
source repository.

svnsync synchronize can be gracefully canceled and restarted.

When SOURCE_URL is provided, svnsync will use it as the repository URL which the destination repository is mirroring. Gener-
aly, SOURCE_URL will be exactly the same source URL as was used with the svnsync initialize command when the mirror was
first set up. You may choose, however, to omit SOURCE_URL, in which case svnsync will consult the mirror repository's records
to determine the source URL which should be used.

We strongly recommend that you specify the source URL on the command-line, especially when untrusted users have
write access to the revision O properties which svnsync uses to coordinate its efforts.

Options

--config-dir DR
--config-option CONFSPEC
- -di sabl e-1 ocki ng

- - no- aut h-cache
--non-interactive
--quiet (-q)
--sour ce- password PASSWD
--sour ce- prop-encodi ng ARG
--source-username NAME
--steal -1ock

--sync- password PASSWD
--sync-user name NAVE
--trust-server-cert

Examples

Copy unsynchronized revisions from the source repository to the mirror repository:

$ svnsync synchroni ze /llvar/svn/repos-mrror \
/1

file:
http://svn. exanpl e. coni r epos
Committed revision 1.

Copi ed properties for revision 1.

Conmitted revision 2.

Copi ed properties for revision 2.

Conmitted revision 3.

Copi ed properties for revision 3.

389

Subversion Complete Reference

Conmitted revision 45.
Copi ed properties for revision 45.
Conmitted revision 46.
Copi ed properties for revision 46.
Conmitted revision 47.
gopi ed properties for revision 47.

svnrdump—Remote Subversion Repository Data Mi-
gration

svnrdump joined the Subversion tool chain in the Subversion 1.7 release. It is best described as a network-aware version of the
svhadmin dump and svhadmin load commands, paired together and released as a separate standalone program. We discuss the
process of dumping and loading repository data—using both svnadmin and svnrdump— in the section called “Migrating Reposit-
ory Data Elsewhere”.

svnrdump Options

Optionsin svnrdump are global, just asthey arein svn and svnadmin:

--config-dir DR
Instructs Subversion to read configuration information from the specified directory instead of the default location
(. subver si on in the user's home directory).

--config-optionFl LE:SECTI ON.OPTI ON=[VALUE]
Sets, for the duration of the command, the value of a runtime configuration option. FI LE and SECTI ON are the runtime con-
figuration file (either conf i g or ser ver s) and the section thereof, respectively, which contain the option whose value you
wish to change. OPTI ONis, of course, the option itself, and VALUE the value (if any) you wish to assign to the option. For ex-
ample, to temporarily disable the use of the automatic property setting feature, use -
-config-option=servers:global:http-library=serf.You can use this option multiple times to change mul-
tiple option values simultaneously.

--increnental
Dump arevision or revision range only as a diff against the previous revision, instead of the default, which is begin a dumped
revision range with a complete expansion of all contents of the repository as of that revision.

--no-aut h-cache
Prevents caching of authentication information (e.g., username and password) in the Subversion runtime configuration direct-
ories.

--non-interactive
In the case of an authentication failure or insufficient credentials, prevents prompting for credentials (e.g., username or pass-
word). Thisis useful if you're running Subversion inside an automated script and it's more appropriate to have Subversion fail
than to prompt for more information.

- - passwor d PASSWD
Specifies the password to use when authenticating against a Subversion server. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

--quiet (-q)
Requests that the client print only essential information while performing an operation.

390

Subversion Complete Reference

--revision(-r)ARG
Used by svnsync copy-revprops to specify a particular revision or revision range on which to operate.

--trust-server-cert
Used with - - non-i nt er acti ve to accept any unknown SSL server certificates without prompting.

- - user name NAMVE
Specifies the username to use when authenticating against a Subversion server. If not provided, or if incorrect, Subversion will
prompt you for this information as needed.

svnrdump Subcommands

Here are the various subcommands for the svnrdump program.

391

Subversion Complete Reference

Name

svnrdump dump

Synopsis
svnrdunp dunp SOURCE URL

Description

Dump—that is, generate a repository dump stream of—revisions of the repository item located at SOURCE_URL, printing the in-
formation to standard output. By default, the entire history will be included in the dump stream, but the scope of the operation can
be limited viathe use of the- - r evi si on (- r) option.

Options

--config-dir DR

--config-option FILE SECTI ON: OPTI ON=[VALUE]
--increnental

--no- aut h-cache

--non-interactive

--password PASSWD

--quiet (-q)

--revision (-r) ARG

--trust-server-cert

--user name NAVE

Examples

Generate a dump stream of the full history of aremote repository (assuming that the user as who this runs has authorization to read
all pathsin the repository).

svnrdunp dunp http://svn.exanple.confrepos/calc > full.dunp
Dunped revi sion O.
Dunped revi sion 1.

Dunped revi sion 2.

* kX LH

Incrementally dump a single revision from that same repository:

$ svnrdunp dunp http://svn.exanpl e.conm repos/calc \
-r 21 --increnmental > full.dunp

* Dunped revision 21.

$

392

Subversion Complete Reference

Name
svnrdump help — Help!
Synopsis
svnrdunp hel p
Description

Use this to get help. Well, certain kinds of help. Need white lab coat and straightjackets kind of help? There's a whole different
protocol for that sort of thing.

Options

None

393

Subversion Complete Reference

Name

svnrdump load

Synopsis
svnrdunp | oad DEST_URL
Description

Read from standard input revision information described in a Subversion repository dump stream, and load that information into
the repository located at DEST_URL.

Options

--config-dir DR

--config-option FILE: SECTI ON: OPTI ON=[VALUE]
--no- aut h-cache

--non-interactive

--password PASSWD

--quiet (-q)

--trust-server-cert

--user name NAVE

Examples

Dump the contents of alocal repository, and use svnrdump load to transfer that revision information into an existing remote re-
pository:

$ svnadm n dunp -q /var/svn/repos/ new project | \
svnrdunp | oad http://svn. exanpl e. conirepos/ new proj ect
Loaded revision 0
Loaded revision 1.
Loaded revision 2.

* % X

To operate properly svnrdump load requires that the target repository have revision property modification enabled
/ viathe pre-revprop-change hook. For details about that hook, see pre-revprop-change.

svnserve—Custom Subversion Server

svnserve allows access to Subversion repositories using Subversion's custom network protocol.

You can run svnserve as a standalone server process (for clients that are using the svn: / / access method); you can have a dae-
mon such as inetd or xinetd launch it for you on demand (also for svn: / /), or you can have sshd launch it on demand for the
svn+ssh: // access method.

Regardless of the access method, once the client has selected a repository by transmitting its URL, svnserve reads a file named

394

Subversion Complete Reference

conf/svnserve. conf in the repository directory to determine repository-specific settings such as what authentication data-
base to use and what authorization policies to apply. See the section called “svnserve, a Custom Server” for details of the svn-
serve. conf file

svnserve Options

Unlike the previous commands we've described, svnser ve has no subcommands—it is controlled exclusively by options.

--cache-ful I texts ARG
Toggles support for fulltext file content caching (in FSFS repositories only).

--cache-txdel t as ARG
Toggles support for file content delta caching (in FSFS repositories only).

--conpressi on LEVEL
Specifies the level of compression used for wire transmissions as an integer beween 0 and 9, inclusive. A value of 9 offersthe
best compression, 5 is the default value, and O disables compression altogether.

- -daenon (- d)
Causes svnserve to run in daemon mode. svnserve backgrounds itself and accepts and serves TCP/IP connections on the svn
port (3690, by default).

--foreground
When used together with - d, causes svnserveto stay in the foreground. Thisis mainly useful for debugging.

--inetd(-i)
Causes svnserveto usethe st di n and st dout file descriptors, asis appropriate for a daemon running out of inetd.

--hel p(-h)
Displays a usage summary and exits.

--listen-host HOST
Causes svnserve to listen on the interface specified by HOST, which may be either a hostname or an | P address.

--listen-once (- X)
Causes svnser ve to accept one connection on the svn port, serve it, and exit. Thisoption is mainly useful for debugging.

--listen-port PORT
Causes svnserve to listen on PORT when run in daemon mode. (FreeBSD daemons listen only on tcp6 by default—this option
tellsthem to aso listen on tcp4.)

--log-fileFlI LENAVE
Instructs svnserve to create (if necessary) and use the file located at FI LENAME for Subversion operational log output of the
same sort that mod_dav_svn generates. See the section called “High-level Logging” for details.

--menory-cache-si ze (- M ARG
Configures the size (in Megabytes) of the extra in-memory cache used to minimize redundant operations. The default value is
16. (This cacheisused for FSFS-backed repositories only.)

--pid-fileFl LENAME
Causes svnserve to write its process ID to FI LENAME, which must be writable by the user under which svnserveis running.

--prefer-ipv6 (-6
When resolving the listen hostname, prever an IPv6 answer over an [Pv4 one. IPv4 is preferred by default.

--qui et
Disables progress notifications. Error output will still be printed.

395

Subversion Complete Reference

--root (-r)ROOT
Sets the virtual root for repositories served by svnserve. The pathname in URLS provided by the client will be interpreted rel-
ative to thisroot and will not be allowed to escape this root.

--threads (-T)
When running in daemon mode, causes svnserve to spawn a thread instead of a process for each connection (e.g., for when
running on Windows). The svnserve process still backgrounds itself at startup time.

--tunnel (-t)
Causes svnserve to run in tunnel mode, which isjust like the inetd mode of operation (both modes serve one connection over
st di n/st dout , and then exit), except that the connection is considered to be preauthenticated with the username of the cur-
rent UID. This flag is automatically passed for you by the client when running over a tunnel agent such as ssh. That means
there's rarely any need for you to pass this option to svnserve. So, if you find yourself typing svnserve --tunnel onthe
command line and wondering what to do next, see the section called “Tunneling over SSH”.

- -tunnel - user NAME
Used in conjunction with the - - t unnel option, tells svnserve to assume that NAVE is the authenticated user, rather than the
UID of the svnserve process. Thisis useful for users wishing to share a single system account over SSH, but to maintain sep-
arate commit identities.

--version
Displays version information and alist of repository backend modules available, and then exits.

svndumpfilter—Subversion History Filtering

svndumpfilter is a command-line utility for removing history from a Subversion dump file by either excluding or including paths
beginning with one or more named prefixes. For details, see the section called “ svndumpfilter”.

svndumpfilter Options

Optionsin svndumpfilter are global, just asthey are in svn and svnadmin:

--drop-enpty-revs
If filtering causes any revision to be empty (i.e., causes no change to the repository), removes these revisions from the final
dump file.

--pattern
Treat the path prefixes provided to the filtering commands as file glob patterns rather than explicit path substrings.

- -renunber-revs
Renumbers revisions that remain after filtering.

- - ski p- mi ssi ng- ner ge- sour ces
Skips merge sources that have been removed as part of the filtering. Without this option, svndumpfilter will exit with an error
if the merge source for aretained path is removed by filtering.

--preserve-revprops
If al nodes in a revision are removed by filtering and - - dr op- enpt y- r evs is not passed, the default behavior of svn-
dumpfilter isto remove al revision properties except for the date and the log message (which will merely indicate that the re-
vision is empty). Passing this option will preserve existing revision properties (which may or may not make sense since the re-
lated content is no longer present in the dump file).

--targets FI LENAMVE
Instructs svndumpfilter to read additional path prefixes—one per line—from the file located at FI LENAME. Thisis especially
useful for complex filtering operations which require more prefixes than the operating system allows to be specified on a

396

Subversion Complete Reference

single command line.

--qui et
Does not display filtering statistics.

svndumpfilter Subcommands

Here are the various subcommands for the svndumpfilter program.

397

Subversion Complete Reference

Name

svndumpfilter exclude — Filter out nodes with given prefixes from the dump stream.

Synopsis

svndunpfilter exclude PATH PREFI X. ..

Description

This can be used to exclude nodes that begin with one or more PATH_PREFI Xes from afiltered dump file.

Options

--drop-enpty-revs

--pattern
--preserve-revprops

- - qui et

--renunber-revs

- - ski p- mi ssi ng- ner ge- sour ces
--targets FlI LENAME

Examples

If we have a dump file from a repository with a number of different picnic-related directoriesin it, but we want to keep everything
except the sandwi ches part of the repository, we'll exclude only that path:

$ svndunpfilter exclude sandwi ches < dunpfile > filtered-dunpfile
Excl udi ng prefixes:
'/ sandwi ches'

Revision 0 committed as O.
Revision 1 commtted as 1.
Revision 2 commtted as 2.
Revision 3 commtted as 3.
Revision 4 commtted as 4.

Dropped 1 node(s):
s '/ sandwi ches'

Beginning in Subversion 1.7, svndumpfilter can optionally treat the PATH_PREFI Xs not merely as explicit substrings, but as file
patterns instead. So, for example, if you wished to filter out paths which ended with . OLD, you would do the following:

$ svndunpfilter exclude --pattern "*.OLD' < dunpfile > filtered-dunpfile
Excl udi ng prefix patterns:
"/*. QLD

Revision O commtted as O.
Revision 1 commtted as 1.

398

Subversion Complete Reference

Revision 2 commtted as 2.
Revision 3 commtted as 3.
Revision 4 commtted as 4.

Dr opped 3 node(s):
"/ condi nents/salt.OLD
'/ condi nent s/ pepper. OLD
'/t oppi ngs/ cheese. OLD

399

Subversion Complete Reference

Name

svndumpfilter include — Filter out nodes without given prefixes from dump stream.

Synopsis
svndunpfilter include PATH PREFI X. ..

Description

Can be used to include nodes that begin with one or more PATH_PREFI Xesin afiltered dump file (thus excluding al other paths).

Options

--drop-enpty-revs

--pattern
--preserve-revprops

- - qui et

--renunber-revs

- - ski p- mi ssi ng- ner ge- sour ces
--targets FlI LENAME

Example

If we have a dump file from a repository with a number of different picnic-related directories in it, but want to keep only the
sandwi ches part of the repository, we'll include only that path:

$ svndunpfilter include sandwi ches < dunpfile > filtered-dunpfile
I ncl udi ng prefixes:
'/ sandwi ches'

Revision 0 commtted as
Revision 1 commtted as
Revision 2 conmtted as
Revision 3 conmmtted as
Revision 4 conmmtted as

PONRO

Dropped 12 node(s):
"/ condi nent s’
'/ condi nent s/ pepper'
'/ condi nent s/ pepper. OLD
"/ condi nents/salt’
"/ condi nents/salt.O.D
"/drinks'
'/ snacks'
"/ supplies’
"/t oppi ngs'
'/t oppi ngs/ cheese'
'/ toppi ngs/ cheese. OLD
"/toppings/lettuce'

Beginning in Subversion 1.7, svndumpfilter can optionally treat the PATH_PREFI Xs not merely as explicit substrings, but as file

400

Subversion Complete Reference

patterns instead. So, for example, if you wished to include only paths which ended with ks, you would do the following:

$ svndunpfilter include --pattern "*ks" < dunpfile > filtered-dunpfile
I ncl udi ng prefix patterns:

"/ *ks
Revision O commtted as O.
Revision 1 commtted as 1.
Revision 2 commtted as 2.
Revision 3 conmitted as 3.
Revision 4 committed as 4.

Dropped 11 node(s):
"/ condi nent s'
'/ condi nent s/ pepper’
'/ condi nent s/ pepper. QLD
'/ condi nents/salt’
"/condi nents/salt. OLD
'/ sandwi ches'
"/ supplies’
'/ t oppi ngs'
'/t oppi ngs/ cheese'
'/t oppi ngs/ cheese. OLD
"/toppings/lettuce'

401

Subversion Complete Reference

Name

svndumpfilter help — Help!

Synopsis

svndunpfilter help [SUBCOWAND. . .]
Description

Displays the help message for svndumpfilter. Unlike other help commands documented in this chapter, there is no witty com-
mentary for this help command. The authors of this book deeply regret the omission.

Options

None

svnversion—Subversion Working Copy Version Info

402

Subversion Complete Reference

Name

svnversion — Summarize the local revision(s) of aworking copy.

Synopsis
svnversion [OPTI ONS] [WC PATH [TRAI L_URL]]

Description

svnversion is a program for summarizing the revision mixture of aworking copy. The resultant revision number, or revision range,
iswritten to standard output.

It's common to use this output in your build process when defining the version number of your program.

TRAI L_URL, if present, is the trailing portion of the URL used to determine whether WC_PATH itself is switched (detection of
switches within WC_PATH does not rely on TRAI L_URL).

When WC_PATH is not defined, the current directory will be used as the working copy path. TRAI L_URL cannot be defined if
WC_PATHis not explicitly given.

Options
Like svnserve, svnver sion has no subcommands—only options:
--no-new i ne (- n)

Omits the usua trailing newline from the output.

--conmitted (-c)
Uses the last-changed revisions rather than the current (i.e., highest locally available) revisions.

--help(-h)
Prints a help summary.

--quiet (-q)
Requests that the program print only essential information while performing an operation.

--version
Prints the version of svnversion and exit with no error.

Examples

If the working copy is all at the same revision (e.g., immediately after an update), then that revision is printed out:

$ svnversion
4168

You can add TRAI L_URL to make sure the working copy is not switched from what you expect. Note that the WC_PATH is re-
quired in this command:

403

Subversion Complete Reference

$ svnversion . /var/svn/trunk
4168

For amixed-revision working copy, the range of revisions present is printed:

$ svnversion
4123: 4168

If the working copy contains modifications, atrailing 'M is added:

$ svnversion
4168M

If the working copy is switched, atrailing 'S’ is added:

$ svnversion
4168S

svnversion will also inform you if the target working copy is sparsely populated (see the section called “ Sparse Directories’) by at-
taching the 'P' code to its output:

$ svnversion
4168P

Thus, here is amixed-revision, sparsely populated and switched working copy containing some local modifications:

$ svnversion
4123: 4168NMSP

mod_dav_svn—Subversion Apache HTTP Server
Module

404

Subversion Complete Reference

Name

mod_dav_svn Configuration Directives — Apache configuration directives for serving Subversion repositories through the Apache
HTTP Server.

Description

This section briefly describes each Subversion Apache configuration directive. For an in-depth description of configuring Apache
with Subversion, see the section called “httpd, the Apache HTTP Server”.

Directives

These aretheht t pd. conf directivesthat apply to mod_dav_svn:

DAV svn
Must be included in any Di r ect ory or Locat i on block for a Subversion repository. It tells httpd to use the Subversion
backend for rod_dav to handle all requests.

SVNActivitiesDB directory-path
Specifies the location in the filesystem where the activities database should be stored. By default, mod_dav_svn creates and
uses adirectory in therepository called dav/ acti vi ti es. d. The path specified with this option must be an absolute path.

If specified for an SVNPar ent Pat h area, mod_dav_svn appends the basename of the repository to the path specified here.
For example:

<Location /svn>
DAV svn

any "/svn/foo" URL will map to a repository in
/I net/svn.nfs/repositories/foo
SVNPar ent Pat h "/ net/svn.nfs/repositories”

any "/svn/foo" URL will map to an activities db in
[var/db/svn/activities/foo
SVNActi viti esDB "/var/db/svn/activities"

</ Locati on>

SVNAdverti seV2Protocol On| O f
New to Subversion 1.7, this toggles whether mod_dav_svn advertises its support for the new version of its HTTP protocol
also introduced in that version. Most admins will not wish to use this directive (which is On by default), choosing instead to
enjoy the performance benefits that the new protocol offers. However, whena configuring a server as a write-through proxy to
another server which does not support the new protocol, set this directive'svalueto Of f .

SVNAI | owBul kUpdates On| OF f
Toggles support for al-inclusive responses to update-style REPORT requests. Subversion clients use REPORT requests to get
information about directory tree checkouts and updates from mod_dav_svn. They can ask the server to send that information
in one of two ways: with the entirety of the tree's information in one massive response, or with a skelta (a skeletal representa-
tion of a tree delta) which contains just enough information for the client to know what additional data to request from the
server. When this directive is included with avalue of O f , mod_dav_svn will only ever respond to these REPORT requests
with skelta responses, regardless of the type of responses requested by the client.

Most folks won't need to use this directive at all. It primarily exists for administrators who wish—for security or auditing reas-
ons—to force Subversion clients to fetch individually all the files and directories needed for updates and checkouts, thus leav-

405

Subversion Complete Reference

ing an audit trail of GET and PROPFI ND requests in Apache's logs. The default value of this directiveis On.

SVNAuUt over si oni ng On| O f
When its value is On, allows write requests from WebDAYV clients to result in automatic commits. A generic log message is
auto-generated and attached to each revision. If you enable autoversioning, you'll likely want to set ModM neUsePat hl nf o
On so that mod_m e can set svn: i ne-t ype to the correct MIME type automatically (as best as nod_m e is able to,
of course). For more information, see Appendix C, WebDAV and Autoversioning. The default value of this directiveisOf f .

SVNCacheFul | Texts On| O f
When set to On, this tells Subversion to cache content fulltexts if sufficient in-memory cache is available, which could offer a
significant performance benefit to the server. (See also the SVNI nMenor yCacheSi ze directive.) The default value of this
directiveisOf f .

SVNCacheText Del tas On| O f
When set to On, this tells Subversion to cache content deltas if sufficient in-memory cache is available, which could offer a
significant performance benefit to the server. (See also the SVNI nMenor yCacheSi ze directive.) The default value of this
directiveisOf f .

SVNConpr essi onLevel | evel
Specifies the compression level used when sending file content over the network. A value of O disables compression atogeth-
er, and 9 isthe maximum value. 5 is the default value.

SVNI ndexXSLT directory-path
Specifiesthe URI of an XSL transformation for directory indexes. This directive is optional.

SVNI nMenoryCacheSi ze si ze
Specifies the maximum size (in kbytes) per process of Subversion'sin-memory object cache. The default valueis 16384; use
avaue of 0 to deactivate this cache atogether.

SVNLi st Parent Pat h On| O f
When set to On, allows a GET of SVNPar ent Pat h, which resultsin alisting of al repositories under that path. The default
setting isOf f .

SVNwast er URI url
Specifiesa URI to the master Subversion repository (used for awrite-through proxy).

SVNPar ent Pat h directory-path
Specifies the location in the filesystem of a parent directory whose child directories are Subversion repositories. In a configur-
ation block for a Subversion repository, either this directive or SVNPat h must be present, but not both.

SVNPat h directory-path
Specifies the location in the filesystem for a Subversion repository's files. In a configuration block for a Subversion repository,
either this directive or SVNPar ent Pat h must be present, but not both.

SVNPat hAut hz On| O f | short _circuit
Controls path-based authorization by enabling subrequests (On), disabling subrequests (Cf f ; see the section called “Disabling
path-based checks’), or querying mod_authz_svn directly (shor t _ci r cui t). The default value of this directiveis On.

SVNReposNanme name
Specifies the name of a Subversion repository for usein HTTP CGET responses. This value will be prepended to the title of all
directory listings (which are served when you navigate to a Subversion repository with a web browser). This directive is op-
tional.

SVNSpeci al URI conmponent
Specifies the URI component (namespace) for special Subversion resources. The default is! svn, and most administrators will
never use this directive. Set this only if there is a pressing need to have a file named ! svn in your repository. If you change
this on a server aready in use, it will break all of the outstanding working copies, and your users will hunt you down with
pitchforks and flaming torches.

406

Subversion Complete Reference

mod_authz_svn—Subversion Apache HTTP Author-
ization Module

407

Subversion Complete Reference

Name

mod_authz_svn Configuration Directives — Apache configuration directives for configuring path-based authorization for Subver-
sion repositories served through the Apache HTTP Server.

Description

This section briefly describes each Apache configuration directive offered by mod_authz_svn. For an in-depth description of us-
ing path-based authorization in Subversion, see the section called “ Path-Based Authorization”.

Directives

Thesearetheht t pd. conf directivesthat apply to mod_authz_svn:

Aut hzFor ceUser naneCase Upper | Lower
Set to Upper or Lower to perform case conversion of the specified sort on the authenticated username before checking it for
authorization. While usernames are compared in a case-sensitive fashion against those referenced in the authorization rules
file, thisdirective can at least normalize variably-cased usernames into something consi stent.

Aut hzSVNAccessFile file-path
Consult f i | e- pat h for access rules describing the permissions for pathsin Subversion repository.

Aut hzSVYNAnonymous On| OF f
Setto OF f to disable two special-case behaviours of this module; interaction with the Sat i sfy Any directive and enforce-
ment of the authorization policy even when no Requi r e directives are present. The default value of this directiveis On.

Aut hzSVNAut horitative On| O f
Setto Of f to allow access control to be passed aong to lower modules. The default value of this directiveis On.

Aut hz SVNNoAut hWwhenAnonymousAl | owed On| O f
Set to On to suppress authentication and authorization for requests which anonymous users are allowed to perform. The default
value of this directiveis On.

Subversion Properties

Subversion allows users to invent arbitrarily named versioned properties on files and directories, as well as unversioned properties
on revisions. The only restriction is on properties whose names begin with svn: (those are reserved for Subversion's own use).
While these properties may be set by usersto control Subversion's behavior, users may not invent new svn: properties.

Versioned Properties

These are the versioned properties that Subversion reserves for its own use:

svn: execut abl e
If present on afile, the client will make the file executable in Unix-hosted working copies. See the section called “File Execut-
ability”.

svn: m me-type
If present on afile, the value indicates the file's MIME type. This allows the client to decide whether line-based contextual
merging is safe to perform during updates, and can also affect how the file behaves when fetched via a web browser. See the
section called “File Content Type”.

svn:ignore

408

Subversion Complete Reference

If present on a directory, the value is alist of unversioned file patterns to be ignored by svn status and other subcommands.
See the section called “Ignoring Unversioned Items’.

svn: keywor ds
If present on a file, the value tells the client how to expand particular keywords within the file. See the section called
“Keyword Substitution”.

svn: eol -style
If present on a file, the value tells the client how to manipulate the file's line-endings in the working copy and in exported
trees. See the section called “ End-of-Line Character Sequences’ and svn export earlier in this chapter.

svn: external s
If present on adirectory, the valueis amultiline list of other paths and URL s the client should check out. See the section called
“Externals Definitions’.

svn: speci al
If present on afile, indicates that the fileis not an ordinary file, but a symbolic link or other special object.l

svn: needs- | ock
If present on afile, tells the client to make the file read-only in the working copy, as a reminder that the file should be locked
before editing begins. See the section called “Lock Communication”.

svn: nergei nfo
Used by Subversion to track merge data. See the section called “Mergeinfo and Previews’ for details, but you should never
edit this property unless you really know what you're doing.

Unversioned Properties

These are the unversioned properties that Subversion reserves for its own use:

svn: aut hor
If present, contains the authenticated username of the person who created the revision. (If not present, the revision was com-
mitted anonymously.)

svn: aut over si oned
If present, the revision was created via the autoversioning feature. See the section called “ Autoversioning”.

svn: dat e
Contains the UTC time the revision was created, in 1SO 8601 format. The value comes from the server machine's clock, not
the client's.

svn: | og
Contains the log message describing the revision.

svn: rdunp- 1 ock
Used to temporarily enforce mutually exclusive access to the repository by svnrdump load. This property is generally only
observed when such an operation is active—or when an svnrdump command failed to cleanly disconnect from the repository.
(This property is only relevant when it appears on revision 0.)

svn: sync-currently-copying
Contains the revision number from the source repository which is currently being mirrored to this one by the svnsync tool.
(This property is only relevant when it appears on revision 0.)

svn:sync-from uui d
Contains the UUID of the repository of which this repository has been initialized as a mirror by the svnsync tool. (This prop-

IAs of thiswriting, symbolic links are indeed the only “special” objects. But there might be more in future releases of Subversion.

409

Subversion Complete Reference

erty isonly relevant when it appears on revision 0.)

svn: sync-fromurl
Contains the URL of the repository directory of which this repository has been initialized as a mirror by the svnsync tool.
(This property is only relevant when it appears on revision 0.)

svn: sync-| ast - nerged-rev
Contains the revision of the source repository which was most recently and successfully mirrored to this one. (This property is
only relevant when it appears on revision 0.)

svn: sync- | ock
Used to temporarily enforce mutually exclusive access to the repository by svnsync mirroring operations. This property is gen-

erally only observed when such an operation is active—or when an svnsync command failed to cleanly disconnect from the
repository. (This property is only relevant when it appears on revision 0.)

Repository Hooks

These are the repository hooks that Subversion provides:

410

Subversion Complete Reference

Name

start-commit — Notification of the beginning of a commit.

Description

The start-commit hook is run before the commit transaction is even created. It istypically used to decide whether the user has com-
mit privileges at all.

If the start-commit hook program returns a nonzero exit value, the commit is stopped before the commit transaction is even cre-
ated, and anything printed to st der r is marshalled back to the client.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path
2. Authenticated username attempting the commit

3. Colon-separated list of capabilities that a client passes to the server, including dept h, ner gei nf o, and | og-r evpr ops
(new in Subversion 1.5).
Common uses

Access control (e.g., temporarily lock out commits for some reason).

A meansto alow access only from clients that have certain capabilities.

411

Subversion Complete Reference

Name

pre-commit — Notification just prior to commit completion.

Description

The pr e-conmi t hook isrun just before a commit transaction is promoted to a new revision. Typically, this hook is used to pro-
tect against commits that are disallowed due to content or location (e.g., your site might require that all commits to a certain branch
include aticket number from the bug tracker, or that the incoming log message is nonempty).

If the pr e- commi t hook program returns a nonzero exit value, the commit is aborted, the commit transaction is removed, and
anything printed to st der r ismarshalled back to the client.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Commit transaction name

Additionally, Subversion passes any lock tokens provided by the committing client to the hook script via standard input. When
present, these are formatted as a single line containing the string LOCK- TOKENS: , followed by additional lines—one per lock

token—which contain the lock token information. Each lock token information line consists of the URI-escaped repository filesys-
tem path associated with the lock, followed by the pipe (|) separator character, and finally the lock token string.

Common uses

Change validation and control

412

Subversion Complete Reference

Name

post-commit — Notification of a successful commit.

Description
The post - commi t hook is run after the transaction is committed and a new revision is created. Most people use this hook to

send out descriptive emails about the commit or to notify some other tool (such as an issue tracker) that a commit has happened.
Some configurations also use this hook to trigger backup processes.

If the post - commi t hook returns a nonzero exit status, the commit will not be aborted since it has already completed. However,
anything that the hook printed to st der r will be marshalled back to the client, making it easier to diagnose hook failures.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Revision number created by the commit

Common uses

Commit notification; tool integration

413

Subversion Complete Reference

Name

pre-revprop-change — Notification of arevision property change attempt.

Description

The pr e-r evpr op- change hook is run immediately prior to the modification of a revision property when performed outside
the scope of a normal commit. Unlike the other hooks, the default state of this one is to deny the proposed action. The hook must
actually exist and return a zero exit value before arevision property modification can happen.

If the pr e- r evpr op- change hook doesn't exist, isn't executable, or returns a nonzero exit value, no change to the property will
be made, and anything printed to st der r is marshalled back to the client.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Revision whose property is about to be modified

3. Authenticated username attempting the property change

4. Name of the property changed

5. Change description: A (added), D (deleted), or M(modified)

Additionally, Subversion passes the intended new value of the property to the hook program via standard input.

Common uses

Access control; change validation and control

414

Subversion Complete Reference

Name

post-revprop-change — Notification of a successful revision property change.

Description

Thepost - r evpr op- change hook isrun immediately after the modification of arevision property when performed outside the
scope of a normal commit. As you can derive from the description of its counterpart, the pr e- r evpr op- change hook, this
hook will not run at all unlessthe pr e- r evpr op- change hook isimplemented. It istypically used to send email notification of
the property change.

If the post - r evpr op- change hook returns a nonzero exit status, the change will not be aborted since it has already completed.

However, anything that the hook printed to st der r will be marshalled back to the client, making it easier to diagnose hook fail-
ures.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Revision whose property was modified

3. Authenticated username of the person making the change
4. Name of the property changed

5. Change description: A (added), D (deleted), or M(modified)

Additionally, Subversion passes to the hook program, via standard input, the previous value of the property.

Common uses

Property change notification

415

Subversion Complete Reference

Name
pre-lock — Notification of a path lock attempt.

Description

The pr e- | ock hook runs whenever someone attempts to lock a path. It can be used to prevent locks altogether or to create a
more complex policy specifying exactly which users are allowed to lock particular paths. If the hook notices a preexisting lock, it
can also decide whether auser is allowed to “steal” the existing lock.

If the pr e- | ock hook program returns a nonzero exit value, the lock action is aborted and anything printed to st der r is mar-
shalled back to the client.

The hook program may optionally dictate the lock token which will be assigned to the lock by printing the desired lock token to
standard output. Because of this, implementations of this hook should carefully avoid unexpected output sent to standard output.

token falls to the script itself. Failure to generate unique lock tokens may result in undefined—and very likely, un-

Q If the pr e- | ock script takes advantage of lock token dictation feature, the responsibility of generating a unique lock
desired—behavior.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Versioned path that isto be locked

3. Authenticated username of the person attempting the lock
4. Comment provided when the lock was created

5. 1if the user is attempting to steal an existing lock; O otherwise

Common uses

Access control

416

Subversion Complete Reference

Name
post-lock — Notification of a successful path lock.

Description

The post - | ock hook runs after one or more paths have been locked. It is typically used to send email notification of the lock
event.

If the post - | ock hook returns a nonzero exit status, the lock will not be aborted since it has already completed. However, any-
thing that the hook printed to st der r will be marshalled back to the client, making it easier to diagnose hook failures.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Authenticated username of the person who locked the paths

Additionally, the list of pathslocked is passed to the hook program via standard input, one path per line.

Common uses

Lock notification

417

Subversion Complete Reference

Name

pre-unlock — Notification of a path unlock attempt.

Description

The pr e- unl ock hook runs whenever someone attempts to remove alock on afile. It can be used to create policies that specify
which users are alowed to unlock particular paths. It's particularly important for determining policies about lock breakage. If user
A locks afile, is user B allowed to break the lock? What if the lock is more than a week old? These sorts of things can be decided
and enforced by the hook.

If the pr e- unl ock hook program returns a nonzero exit value, the unlock action is aborted and anything printed to st derr is
marshalled back to the client.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Versioned path which is to be unlocked

3. Authenticated username of the person attempting the unlock
4. Lock token associated with the lock which isto be removed

5. 1if the user is attempting to break the lock; O otherwise

Common uses

Access control

418

Subversion Complete Reference

Name
post-unlock — Notification of a successful path unlock.

Description

The post - unl ock hook runs after one or more paths have been unlocked. It is typically used to send email notification of the
unlock event.

If the post - unl ock hook returns a nonzero exit status, the unlock will not be aborted since it has already completed. However,
anything that the hook printed to st der r will be marshalled back to the client, making it easier to diagnose hook failures.

Input parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. Repository path

2. Authenticated username of the person who unlocked the paths

Additionally, the list of paths unlocked is passed to the hook program via standard input, one path per line.

Common uses

Unlock notification

419

Appendix A. Subversion Quick-Start Guide

If you're eager to get Subversion up and running (and you enjoy learning by experimentation), this appendix will show you how to
create a repository, import code, and then check it back out again as a working copy. Along the way, we give links to the relevant
chapters of this book.

If you're new to the entire concept of version control or to the “copy-modify-merge” model used by both CVS and
Subversion, you should read Chapter 1, Fundamental Concepts before going any further.

Installing Subversion

Subversion is built on a portability layer called APR—the Apache Portable Runtime library. The APR library provides all the inter-
faces that Subversion needs to function on different operating systems: disk access, network access, memory management, and so
on. While Subversion is able to use Apache HTTP Server (or, httpd) as one of its network server programs, its dependence on
APR does not mean that httpd is a required component. APR is a standalone library usable by any application. It does mean,
however, that Subversion clients and servers run on any operating system that httpd runs on: Windows, Linux, all flavors of BSD,
Mac OS X, NetWare, and others.

The easiest way to get Subversion is to download a binary package built for your operating system. Subversion's web site (ht-
tp://subversion.apache.org) often has these packages available for download, posted by volunteers. The site usually contains graph-
ical installer packages for users of Microsoft operating systems. If you run a Unix-like operating system, you can use your system's
native package distribution system (RPMs, DEBS, the portstree, etc.) to get Subversion.

Alternatively, you can build Subversion directly from source code, though it's not always an easy task. (If you're not experienced at
building open source software packages, you're probably better off downloading a binary distribution instead!) From the Subver-
sion web site, download the latest source code release. After unpacking it, follow the instructionsin the | NSTALL fileto build it.

If you're one of those folks that likes to use bleeding-edge software, you can aso get the Subversion source code from the Subver-
sion repository in which it lives. Obviously, you'll need to already have a Subversion client on hand to do this. But once you do,
you can check out aworking copy from http://svn.apache.org/repos/asf/subversi on:

$ svn checkout http://svn.apache. org/repos/asf/subversion/trunk subversion
A subver si on/ HACKI NG

A subver si on/ I NSTALL

A subver si on/ READVE

A subver si on/ aut ogen. sh

A subver si on/ bui I d. conf

The preceding command will create a working copy of the latest (unreleased) Subversion source code into a subdirectory named
subver si on inyour current working directory. You can adjust that last argument as you see fit. Regardless of what you call the
new working copy directory, though, after this operation completes, you will now have the Subversion source code. Of course, you
will still need to fetch afew helper libraries (apr, apr-util, etc.)—see the | NSTALL file in the top level of the working copy for de-
tails.

INote that the URL checked out in the example ends not with subver si on, but with a subdirectory thereof called t r unk. See our discussion of Subversion's
branching and tagging model for the reasoning behind this.

420

http://subversion.apache.org
http://subversion.apache.org
http://svn.apache.org/repos/asf/subversion

Subversion Quick-Start Guide

High-Speed Tutorial

“Please make sure your seat backs are in their full, upright position and that your tray tables are stored. Flight at-
tendants, prepare for take-off...."

What follows is a quick tutoria that walks you through some basic Subversion configuration and operation. When you finish it,
you should have a general understanding of Subversion's typical usage.

The examples used in this appendix assume that you have svn, the Subversion command-line client, and svnadmin,

/ the administrative tool, ready to go on a Unix-like operating system. (This tutorial also works at the Windows com-
mand-line prompt, assuming you make some obvious tweaks.) We also assume you are using Subversion 1.2 or later
(runsvn --versi on to check).

Subversion stores all versioned datain a central repository. To begin, create a new repository:

$ cd /var/svn

$ svnadmi n create repos

$ |Is repos

gonf/ dav/ db/ format hooks/ |ocks/ README.txt

This command creates a Subversion repository in the directory / var/ svn/ r epos, creating the r epos directory itself if it
doesn't already exist. This directory contains (among other things) a collection of database files. Y ou won't see your versioned files
if you peek inside. For more information about repository creation and maintenance, see Chapter 5, Repository Administration.

Subversion has no concept of a “project.” The repository isjust a virtual versioned filesystem, a large tree that can hold anything
you wish. Some administrators prefer to store only one project in a repository, and others prefer to store multiple projects in are-
pository by placing them into separate directories. We discuss the merits of each approach in the section called “Planning Y our Re-
pository Organization”. Either way, the repository manages only files and directories, so it's up to humans to interpret particular
directories as “projects.” So while you might see references to projects throughout this book, keep in mind that we're only ever
talking about some directory (or collection of directories) in the repository.

In this example, we assume you already have some sort of project (a collection of files and directories) that you wish to import into
your newly created Subversion repository. Begin by organizing your data into a single directory called mypr oj ect (or whatever
you wish). For reasons explained in Chapter 4, Branching and Merging, your project's tree structure should contain three top-level
directories named br anches, t ags, andt r unk. Thet r unk directory should contain al of your data, and the br anches and
t ags directories should be empty:

tmp/
myproject/

branches/

tagy/

trunk/
foo.c
bar.c
Makefile

The br anches, t ags, and t r unk subdirectories aren't actually required by Subversion. They're merely a popular convention

421

Subversion Quick-Start Guide

that you'll most likely want to use later on.

Once you have your tree of data ready to go, import it into the repository with the svn import command (see the section called
“Getting Datainto Y our Repository”):

$ svn inmport /tnp/nyproject file:///var/svn/repos/ myproject \
-m"initial inmport"
Addi ng /t mp/ nyproj ect/ branches

Addi ng /tmp/ nyproj ect/tags

Addi ng /tmp/ nyproj ect/trunk

Addi ng /tmp/ nyproj ect/trunk/foo.c
Addi ng /tmp/ nyproj ect/trunk/bar.c
Addi ng /tmp/ nyproj ect/trunk/ Makefile

ébn’m'tted revision 1.
$

Now the repository contains this tree of data. As mentioned earlier, you won't see your files by directly peeking into the repository;
they're al stored within a database. But the repository's imaginary filesystem now contains a top-level directory named ny pr o-
j ect, whichin turn contains your data.

Note that the original / t np/ mypr oj ect directory is unchanged; Subversion is unaware of it. (In fact, you can even delete that

directory if you wish.) To start manipulating repository data, you need to create a new “working copy” of the data, a sort of private
workspace. Ask Subversion to “check out” aworking copy of the mypr oj ect / t r unk directory in the repository:

$ svn checkout file:///var/svn/repos/nyproject/trunk nyproject
A nyproj ect/foo.c

A nyproj ect/bar.c

A nyproj ect/ Makefil e

éﬁecked out revision 1.
$

Now you have a personal copy of part of the repository in a new directory named nypr oj ect . You can edit the files in your
working copy and then commit those changes back into the repository.

* Enter your working copy and edit afile's contents.

* Runsvn diff toseeunified diff output of your changes.

* Runsvn conmit tocommit the new version of your file to the repository.

* Runsvn updat e to bring your working copy “up to date” with the repository.

For afull tour of all the things you can do with your working copy, read Chapter 2, Basic Usage.

At this point, you have the option of making your repository available to others over a network. See Chapter 6, Server Configura-
tion to learn about the different sorts of server processes available and how to configure them.

422

Appendix B. Subversion for CVS Users

This appendix isaguide for CVS users new to Subversion. It's essentially alist of differences between the two systems as “viewed
from 10,000 feet.” For each section, we provide references to relevant chapters when possible.

Although the goal of Subversion is to take over the current and future CV S user base, some new features and design changes were
required to fix certain “broken” behaviorsthat CVS had. This means that, as a CV S user, you may need to break habits—ones that
you forgot were odd to begin with.

Revision Numbers Are Different Now

In CVS, revision numbers are per file. This is because CV S stores its data in RCS files; each file has a corresponding RCSfile in
the repository, and the repository is roughly laid out according to the structure of your project tree.

In Subversion, the repository looks like a single filesystem. Each commit results in an entirely new filesystem tree; in essence, the
repository is an array of trees. Each of these trees is labeled with a single revision number. When someone talks about “revision
54", he's talking about a particular tree (and indirectly, the way the filesystem looked after the 54th commit).

Technically, it's not valid to talk about “revision 5 of f 00. ¢.” Instead, one would say “f 00. ¢ asit appearsin revision 5.” Also,
be careful when making assumptions about the evolution of afile. In CVS, revisions 5 and 6 of f 0o. ¢ are aways different. In
Subversion, it'smost likely that f 0o. ¢ did not change between revisions 5 and 6.

Similarly, in CVS, atag or branch is an annotation on the file or on the version information for that individual file, whereasin Sub-
version, atag or branch isa copy of an entire tree (by convention, into the/ br anches or / t ags directories that appear at the top
level of the repository, beside/ t r unk). In the repository as a whole, many versions of each file may be visible: the latest version
on each branch, every tagged version, and of course the latest version on the trunk itself. So, to refine the terms even further, one
would often say “f 00. ¢ asit appearsin/ br anches/ REL1 inrevision5.”

For more details on this topic, see the section called “ Revisions’.

Directory Versions

Subversion tracks tree structures, not just file contents. It's one of the biggest reasons Subversion was written to replace CVS.

Here's what this means to you, asaformer CVS user:

» The svn add and svn delete commands work on directories now, just as they work on files. So do svn copy and svn move.
However, these commands do not cause any kind of immediate change in the repository. Instead, the working items are simply
“scheduled” for addition or deletion. No repository changes happen until you runsvn commi t .

« Directories aren't dumb containers anymore; they have revision numbers like files. (Or more properly, it's correct to talk about
“directory f 0o/ inrevision5.”)

Let's talk more about that last point. Directory versioning is a hard problem; because we want to allow mixed-revision working
copies, there are some limitations on how far we can abuse this model.

From a theoretical point of view, we define “revision 5 of directory f 00” to mean a specific collection of directory entries and
properties. Now suppose we start adding and removing files from f 0o, and then commit. It would be alie to say that we still have
revision 5 of f 00. However, if we bumped f 00's revision number after the commit, that would be a lie too; there may be other
changesto f 0o we haven't yet received, because we haven't updated yet.

Subversion deals with this problem by quietly tracking committed adds and deletes in the . svn area. When you eventually run
svn updat e, al accounts are settled with the repository, and the directory's new revision number is set correctly. Therefore, only

423

Subversion for CVS Users

after an update is it truly safe to say that you have a “ perfect” revision of a directory. Most of the time, your working copy will
contain “imperfect” directory revisions.

Similarly, a problem arisesif you attempt to commit property changes on a directory. Normally, the commit would bump the work-
ing directory's local revision number. But again, that would be a lie, as there may be adds or deletes that the directory doesn't yet
have, because no update has happened. Therefore, you are not allowed to commit property changes on a directory unless the dir-
ectory is up to date.

For more discussion about the limitations of directory versioning, see the section called “Mixed-revision working copies’.

More Disconnected Operations

In recent years, disk space has become outrageously cheap and abundant, but network bandwidth has not. Therefore, the Subver-
sion working copy has been optimized around the scarcer resource.

The . svn administrative directory serves the same purpose as the CVS directory, except that it also stores read-only, “pristing’
copies of your files. This allows you to do many things offline:
svn status

Shows you any local changes you've made (see the section called “ See an overview of your changes’)

svn diff
Shows you the details of your changes (see the section called “ Examine the details of your local modifications”)

svn revert
Removes your local changes (see the section called “Fix Y our Mistakes”)
Also, the cached pristine files allow the Subversion client to send differences when committing, which CV S cannot do.
The last subcommand in the list—svn revert—is new. It will not only remove local changes, but also unschedule operations such

as adds and deletes. Although deleting the file and then running svn updat e will still work, doing so distorts the true purpose of
updating. And, while we're on this subject...

Distinction Between Status and Update

Subversion attempts to erase alot of the confusion between the cvs status and cvs update commands.

The cvs status command has two purposes: first, to show the user any local modifications in the working copy, and second, to
show the user which files are out of date. Unfortunately, because of CVS's hard-to-read status output, many CV'S users don't take
advantage of this command at all. Instead, they've developed a habit of running cvs updat e or cvs -n updat e to quickly
see their changes. If users forget to use the - n option, this has the side effect of merging repository changes they may not be ready
to deal with.

Subversion removes this muddle by making the output of svn status easy to read for both humans and parsers. Also, svn update
prints only information about files that are updated, not local modifications.

Status

svn status prints all files that have local modifications. By default, the repository is hot contacted. While this subcommand accepts
afair number of options, the following are the most commonly used ones:

-u
Contact the repository to determine, and then display, out-of-dateness information.

424

Subversion for CVS Users

-V
Show all entries under version control.

-N
Run nonrecursively (do not descend into subdirectories).

The svn status command has two output formats. In the default “short” format, local modifications look like this:

$ svn status
M foo.c
M bar/ baz. c

If you specify the - - show updat es (- u) option, alonger output format is used:

$ svn status -u

M 1047 foo.c
1045 faces. ht n
* bl 0o. png
M 1050 bar/baz. c
St at us agai nst revi sion: 1066

In this case, two new columns appear. The second column contains an asterisk if the file or directory is out of date. The third
column shows the working copy's revision number of the item. In the previous example, the asterisk indicates that f aces. ht ni
would be patched if we updated, and that bl 0o. png isanewly added file in the repository. (The absence of any revision number
next to bl 0o. png meansthat it doesn't yet exist in the working copy.)

For a more detailed discussion of svn status, including an explanation of the status codes shown in the previous example, see the
section called “ See an overview of your changes”.

Update

svn update updates your working copy, and prints only information about files that it updates.

Subversion has combined CVS's P and U codes into just U. When a merge or conflict occurs, Subversion simply prints G or C,
rather than a whole sentence about it.

For amore detailed discussion of svn update, see the section called “ Update Y our Working Copy”.

Branches and Tags

Subversion doesn't distinguish between filesystem space and “branch” space; branches and tags are ordinary directories within the
filesystem. This is probably the single biggest mental hurdle that a CV'S user will need to cross. Read all about it in Chapter 4,
Branching and Merging.

ably live in subdirectories of the main project directory. So remember to check out using the URL of the subdirectory
that contains the particular line of development you want, not the project's root URL. If you make the mistake of
checking out the root of the project, you may very well wind up with aworking copy that contains a complete copy of
your project's content for each and every one of its branches and tags.

Q Since Subversion treats branches and tags as ordinary directories, your project's various lines of development prob-

425

Subversion for CVS Users

Metadata Properties

A new feature of Subversion is that you can attach arbitrary metadata (or “properties’) to files and directories. Properties are arbit-
rary name/value pairs associated with files and directories in your working copy.

To set or get a property name, use the svn propset and svn propget subcommands. To list al properties on an object, use svn
proplist.

For more information, see the section called “ Properties’.

Conflict Resolution

CV S marks conflicts with inline “conflict markers,” and then prints a C during an update or merge operation. Historicaly, this has
caused problems, because CV Sisn't doing enough. Many users forget about (or don't see) the C after it whizzes by on their termin-
al. They often forget that the conflict markers are even present, and then accidentally commit files containing those conflict mark-
ers.

Subversion solves this problem in a pair of ways. First, when a conflict occurs in a file, Subversion records the fact that the file is
in a state of conflict, and won't allow you to commit changes to that file until you explicitly resolve the conflict. Second, Subver-
sion provides interactive conflict resolution, which allows you to resolve conflicts as they happen instead of having to go back and
do so after the update or merge operation completes. See the section called “Resolve Any Conflicts’ for more about conflict resolu-
tionin Subversion.

Binary Files and Translation

In the most general sense, Subversion handles binary files more gracefully than CVS does. Because CV'S uses RCS, it can only
store successive full copies of a changing binary file. Subversion, however, expresses differences between files using a binary dif-
ferencing algorithm, regardless of whether they contain textual or binary data. That means all files are stored differentially
(compressed) in the repository.

CV S users have to mark binary fileswith - kb flagsto prevent data from being garbled (due to keyword expansion and line-ending
tranglations). They sometimes forget to do this.

Subversion takes the more paranoid route. First, it never performs any kind of keyword or line-ending translation unless you expli-
citly ask it to do so (see the section called “Keyword Substitution” and the section called “End-of-Line Character Sequences’ for
more details). By default, Subversion treats all file data as literal byte strings, and files are always stored in the repository in an un-
trandated state.

Second, Subversion maintains an internal notion of whether a file is “text” or “binary” data, but this notion is only extant in the
working copy. During an svn update, Subversion will perform contextual merges on locally modified text files, but will not at-
tempt to do so for binary files.

To determine whether a contextual merge is possible, Subversion examines the svn: m ne-t ype property. If the file has no
svn: m nme-t ype property, or hasa MIME type that istextual (e.g., t ext/ *), Subversion assumesit is text. Otherwise, Subver-
sion assumes the file is binary. Subversion also helps users by running a binary-detection algorithm in the svn import and svn add
commands. These commands will make a good guess and then (possibly) set abinary svn: mi me-t ype property on the file being
added. (If Subversion guesses wrong, the user can always remove or hand-edit the property.)

Versioned Modules

Unlike CV'S, a Subversion working copy is aware that it has checked out a module. That means if somebody changes the definition
of amodule (e.g., adds or removes components), a call to svn update will update the working copy appropriately, adding and re-
moving components.

4That iis, providing you don't run out of disk space before your checkout finishes.
426

Subversion for CVS Users

Subversion defines modules as alist of directories within a directory property; see the section called “Externals Definitions”.

Authentication

With CV S's pserver, you are required to log in to the server (using the cvslogin command) before performing any read or write op-
eration—you sometimes even have to log in for anonymous operations. With a Subversion repository using Apache httpd or svn-
serve as the server, you don't provide any authentication credentials at the outset—if an operation that you perform requires au-
thentication, the server will challenge you for your credentials (whether those credentials are username and password, a client certi-
ficate, or even both). So if your repository is world-readable, you will not be required to authenticate at all for read operations.

Aswith CVS, Subversion still caches your credentials on disk (in your ~/ . subver si on/ aut h/ directory) unless you tell it not
to by using the - - no- aut h- cache option.

The exception to this behavior, however, is in the case of accessing an svnserve server over an SSH tunnel, using the
svn+ssh: // URL scheme. In that case, the ssh program unconditionally demands authentication just to start the tunnel.

Converting a Repository from CVS to Subversion

Perhaps the most important way to familiarize CV'S users with Subversion is to let them continue to work on their projects using
the new system. And while that can be somewhat accomplished using a flat import into a Subversion repository of an exported
CV S repository, the more thorough solution involves transferring not just the latest snapshot of their data, but all the history behind
it as well, from one system to another. Thisis an extremely difficult problem to solve; it involves deducing changesets in the ab-
sence of atomicity and trandating between the systems completely orthogona branching policies, among other complications.
Still, ahandful of tools claim to at least partially support the ability to convert existing CV S repositories into Subversion ones.

The most popular (and mature) conversion tool is cvs2svn (http://cvs2svn.tigris.org/), a Python program originally created by
members of Subversion's own development community. This tool is meant to run exactly once: it scans your CV'S repository mul-
tiple times and attempts to deduce commits, branches, and tags as best it can. When it finishes, the result is either a Subversion re-
pository or a portable Subversion dump file representing your code's history. See the web site for detailed instructions and caveats.

427

http://cvs2svn.tigris.org/

Appendix C. WebDAYV and Autoversioning

WebDAYV isan extension to HTTP, and it is growing more and more popular as a standard for file sharing. Today's operating sys-
tems are becoming extremely web-aware, and many now have built-in support for mounting “shares’ exported by WebDAV serv-
ers.

If you use Apache as your Subversion network server, to some extent you are also running a WebDAYV server. This appendix gives
some background on the nature of this protocol, how Subversion uses it, and how well Subversion interoperates with other soft-
ware that is WebDAV -aware.

What Is WebDAV?

DAV stands for “ Distributed Authoring and Versioning.” RFC 2518 defines a set of concepts and accompanying extension methods
to HTTP 1.1 that make the Web a more universal read/write medium. The basic idea is that a WebDAV-compliant web server can
act like a generic file server; clients can “mount” shared folders over HTTP that behave much like other network filesystems (such
asNFS or SMB).

The tragedy, though, is that despite the acronym, the RFC specification doesn't actually describe any sort of version control. Basic
WebDAYV clients and servers assume that only one version of each file or directory exists, and that it can be repeatedly overwritten.

Because RFC 2518 left out versioning concepts, another committee was left with the responsibility of writing RFC 3253 a few
years later. The new RFC adds versioning concepts to WebDAV, placing the “V” back in “DAV”—hence the term “DeltaVv.”
WebDAV/DeltaV clients and servers are often called just “Deltav” programs, since DeltaV implies the existence of basic Web-
DAV.

The original WebDAV standard has been widely successful. Every modern computer operating system has a general WebDAYV cli-
ent built in (details to follow), and a number of popular standalone applications are also able to speak WebDAV—Microsoft Of-
fice, Dreamweaver, and Photoshop, to name a few. On the server end, Apache HTTP Server has been able to provide WebDAV
services since 1998 and is considered the de facto open source standard. Several other commercial WebDAYV servers are available,
including Microsoft'sown |1S.

DeltaV, unfortunately, has not been so successful. It's very difficult to find any DeltaV clients or servers. The few that do exist are
relatively unknown commercial products, and thus it's very difficult to test interoperability. It's not entirely clear as to why DeltaV
has remained stagnant. Some opine that the specification is just too complex. Others argue that while WebDAV's features have
mass appeal (even the least technical users appreciate network file sharing), its version control features just aren't interesting or ne-
cessary for most users. Finally, some believe that DeltaV remains unpopular because there's still no open source server product that
implementsit well.

When Subversion was still in its design phase, it seemed like a great idea to use Apache as a network server. It aready had a mod-
ule to provide WebDAV services. DeltaV was a relatively new specification. The hope was that the Subversion server module
(mod_dav_svn) would eventually evolve into an open source DeltaV reference implementation. Unfortunately, DeltaV has a very
specific versioning model that doesn't quite line up with Subversion's model. Some concepts were mappable; others were not.

Wheat does this mean, then?

First, the Subversion client is not a fully implemented DeltaV client. It needs certain types of things from the server that DeltaV it-
self cannot provide, and thus is largely dependent on a number of Subversion-specific HTTP REPORT requests that only
mod_dav_svn understands.

Second, mod_dav_svn is not a fully realized DeltaV server. Many portions of the DeltaV specification were irrelevant to Subver-
sion, and thus were left unimplemented.

A long-held debate in the Subversion developer community about whether it was worthfile to remedy either of these situations
eventually reached closure, with the Subversion developers officially deciding to abandon plans to fully support DeltaV. As of
Subversion 1.7, Subversion clients and servers introduce numerous non-standard simplifications of the DeltaV standards®, with

428

WebDAYV and Autoversioning

more customizations of this sort likely to come. Those versions of Subversion will, of course, continue to provide the same DeltaV
feature support already present in older releases, but no new work will be done to increase coverage of the specifica
tion—Subversion isintentionally moving away from strict DeltaV asits primary HTTP-based protocol.

Autoversioning

While the Subversion client is not afull DeltaV client, and the Subversion server is not afull DeltaV server, there's till a glimmer
of WebDAYV interoperability to be happy about: autoversioning.

Autoversioning is an optional feature defined in the DeltaV standard. A typical DeltaV server will reject an ignorant WebDAYV cli-
ent attempting to do a PUT to afile that's under version control. To change a version-controlled file, the server expects a series of
proper versioning requests. something like MKACTI VI TY, CHECKOUT, PUT, CHECKI N. But if the DeltaVv server supports
autoversioning, write requests from basic WebDAYV clients are accepted. The server behaves as though the client had issued the
proper series of versioning requests, performing a commit under the hood. In other words, it allows a DeltaV server to interoperate
with ordinary WebDAYV clients that don't understand versioning.

Because so many operating systems already have integrated WebDAYV clients, the use case for this feature can be incredibly ap-
pealing to administrators working with non-technical users. Imagine an office of ordinary users running Microsoft Windows or
Mac OS. Each user “mounts’ the Subversion repository, which appears to be an ordinary network folder. They use the shared
folder as they always do: open files, edit them, and save them. Meanwhile, the server is automatically versioning everything. Any
administrator (or knowledgeable user) can still use a Subversion client to search history and retrieve older versions of data.

This scenario isn't fiction—it's real and it works. To activate autoversioning in mod_dav_svn, use the SVNAut over si oni ng
directive withinthe ht t pd. conf Locat i on block, like so:

<Location /repos>
DAV svn
SVNPat h /var/svn/repository
SVNAuUt over si oni ng on

</ Locati on>

When Subversion autoversioning is active, write requests from WebDAYV clients result in automatic commits. A generic log mes-
sage is automatically generated and attached to each revision.

Before activating this feature, however, understand what you're getting into. WebDAYV clients tend to do many write requests, res-
ulting in a huge number of automatically committed revisions. For example, when saving data, many clients will do a PUT of a
0-byte file (as away of reserving a name) followed by another PUT with the real file data. The single file-write results in two sep-
arate commits. Also consider that many applications auto-save every few minutes, resulting in even more commits.

If you have a post-commit hook program that sends email, you may want to disable email generation either altogether or on certain
sections of the repository; it depends on whether you think the influx of emails will still prove to be valuable notifications or not.
Also, a smart post-commit hook program can distinguish between a transaction created via autoversioning and one created through
anormal Subversion commit operation. The trick is to look for arevision property named svn: aut over si oned. If present, the
commit was made by a generic WebDAV client.

Another feature that may be a useful complement for Subversion's autoversioning comes from Apache's nrod_m me module. If a
WebDAYV client adds a new file to the repository, there's no opportunity for the user to set the the svn: m nme-t ype property.
This might cause the file to appear as a generic icon when viewed within aWebDAV shared folder, not having an association with
any application. One remedy is to have a sysadmin (or other Subversion-knowledgeable person) check out a working copy and
manually set the svn: mi me-t ype property on necessary files. But there's potentially no end to such cleanup tasks. Instead, you
can usethe ModM nmeUsePat hl nf o directivein your Subversion <Locat i on> block:

The Subversion devel opers colloquially refer to this deviation from the DeltaV standard as“HTTPv2".
429

WebDAYV and Autoversioning

<Location /repos>
DAV svn
SVNPat h /var/svn/repository
SVNAuUt over si oni ng on

ModM neUsePat hl nfo on

</ Locati on>

This directive allows nod_m ne to attempt automatic deduction of the MIME type on new files that enter the repository via
autoversioning. The module looks at the file's named extension and possibly the contents as well; if the file matches some common
patterns, the fileéssvn: m ne-t ype property will be set automatically.

Client Interoperability

All WebDAYV clients fall into one of three categories—standalone applications, file-explorer extensions, or filesystem implementa-
tions. These categories broadly define the types of WebDAV functionality available to users. Table C.1, “Common WebDAV cli-
ents’ gives our categorization as well as a quick description of some common pieces of WebDAV -enabled software. Y ou can find
more details about these software offerings, as well astheir general category, in the sections that follow.

TableC.1. Common WebDAYV clients

Software Type Windows Mac Linux Description
Adobe Photoshop [Standalone Web-| X Image editing soft-
DAYV application ware, dlowing dir-

ect opening from,
and writing to, Web-

DAV URLs
cadaver Standalone Web- X X Command-line
DAV application WebDAV client
supporting file

transfer, tree, and
locking operations

DAV Explorer Standalone Web-|X X X Java GUI tool for
DAV application exploring WebDAV

shares
Adobe Dream-|Standalone Web-|X Web production
weaver DAV application software able to dir-

ectly read from and
write to WebDAV

URLS
Microsoft Office Standalone Web-| X Office productivity
DAV application suite with severa

components able to
directly read from
and write to Web-

DAV URLs
Microsoft Web|File-explorer Web-|X GUI file explorer
Folders DAV extension program able to per-

form tree operations
onaWebDAYV share

430

WebDAYV and Autoversioning

Software Type Windows Mac Linux Description
GNOME Nautilus |File-explorer Web- X GUI file explorer
DAV extension able to perform tree
operations on a
WebDAV share
KDE Konqueror File-explorer Web- X GUI file explorer
DAV extension able to perform tree
operations on a
WebDAV share
Mac OS X WebDAV filesys- X Operating system
tem implementation that has built-in sup-

port for mounting
WebDAYV shares.

Novell NetDrive WebDAV filesys-|X Drive-mapping pro-
tem implementation gram for assigning
Windows drive let-
ters to a mounted re-
mote WebDAV

share
SRT WebDrive WebDAV filesys-|X File transfer soft-
tem implementation ware, which, among

other things, allows
the assignment of
Windows drive let-
ters to a mounted re-
mote WebDAV

share
davfs2 WebDAV filesys- X Linux filesystem
tem implementation driver that allows
you to mount a
WebDAYV share

Standalone WebDAYV Applications

A WebDAYV application is a program that speaks WebDAYV protocols with a WebDAYV server. Well cover some of the most popu-
lar programs with this kind of WebDAV support.

Microsoft Office, Dreamweaver, Photoshop

On Windows, several well-known applications contain integrated WebDAV client functionality, such as Microsoft's Office,?
Adobe's Photoshop and Dreamweaver programs. They're able to directly open and save to URLSs, and tend to make heavy use of
WebDAYV locks when editing afile.

Note that while many of these programs also exist for Mac OS X, they do not appear to support WebDAYV directly on that plat-
form. In fact, on Mac OS X, the File##Open dialog box doesn't allow one to type a path or URL at al. It's likely that the WebDAV
features were deliberately left out of Macintosh versions of these programs, since OS X already provides such excellent low-level
filesystem support for WebDAV.

cadaver, DAV Explorer

cadaver is a bare-bones Unix command-line program for browsing and changing WebDAYV shares. Like the Subversion client, it
uses the neon HTTP library—not surprisingly, since both neon and cadaver are written by the same author. cadaver is free software

2WebDAV support was removed from Microsoft Access for some reason, but it exists in the rest of the Office site.

431

WebDAYV and Autoversioning

(GPL license) and is available at http://www.webdav.org/cadaver/.

Using cadaver is similar to using a command-line FTP program, and thus it's extremely useful for basic WebDAV debugging. It
can be used to upload or download files in a pinch, to examine properties, and to copy, move, lock, or unlock files:

$ cadaver http://host/repos
dav:/repos/> Is
Listing collection “/repos/': succeeded.

Coll: > foobar 0 My 10 16:19
> playwight. el 2864 My 4 16:18
> proof bypoem t xt 1461 My 5 15:09
> west coast. | pg 66737 May 5 15:09

dav:/repos/> put README
Upl oadi ng README to "/ repos/ READMVE' :
Progress: [=============================3>] 100. 0% of 357 bytes succeeded.

dav:/repos/ > get proofbypoem txt
Downl oadi ng " /repos/ proof bypoemtxt' to proof bypoemtxt:
Progress: |[=============================>] 100. 0% of 1461 bytes succeeded.

DAV Explorer is another standalone WebDAYV client, written in Java. It's under a free Apache-like license and is available at ht-
tp://www.ics.uci.edu/~webdav/. It does everything cadaver does, but has the advantages of being portable and being a more user-
friendly GUI application. It's also one of the first clients to support the new WebDAV Access Control Protocol (RFC 3744).

Of course, DAV Explorer's ACL support is useless in this case, since mod_dav_svn doesn't support it. The fact that both cadaver
and DAV Explorer support some limited DeltaV commands isn't particularly useful either, since they don't alow MKACTI VI TY
requests. But it's not relevant anyway; we're assuming all of these clients are operating against an autoversioning repository.

File-Explorer WebDAYV Extensions

Some popular file explorer GUI programs support WebDAV extensions that allow a user to browse a DAV share as though it was
just another directory on the local computer, and to perform basic tree editing operations on the items in that share. For example,
Windows Explorer is able to browse a WebDAV server as a“network place.” Users can drag files to and from the desktop, or can
rename, copy, or delete filesin the usua way. But because it's only a feature of the file explorer, the DAV share isn't visible to or-
dinary applications. All DAV interaction must happen through the explorer interface.

Microsoft Web Folders

Microsoft was one of the original backers of the WebDAV specification, and first started shipping a client in Windows 98, which
was known as Web Folders. This client was also shipped in Windows NT 4.0 and Windows 2000.

The original Web Folders client was an extension to Explorer, the main GUI program used to browse filesystems. It works well
enough. In Windows 98, the feature might need to be explicitly installed if Web Folders aren't already visible inside My Computer.
In Windows 2000, simply add a new “network place,” enter the URL, and the WebDAYV share will pop up for browsing.

With the release of Windows XP, Microsoft started shipping a new implementation of Web Folders, known as the WebDAV Mini-
Redirector. The new implementation is a filesystem-level client, allowing WebDAV shares to be mounted as drive letters. Unfortu-
nately, this implementation is incredibly buggy. The client usually tries to convert HTTP URLs (ht t p: / / host / r epos) into
UNC share notation (\ \ host \ r epos); it also often tries to use Windows Domain authentication to respond to basic-auth HTTP
challenges, sending usernames as HOST\ user name. These interoperability problems are severe and are documented in numerous
places around the Web, to the frustration of many users. Even Greg Stein, the origina author of Apache's WebDAV module,
bluntly states that X P Web Folders simply can't operate against an Apache server.

Windows Vista's initial implementation of Web Folders seems to be almost the same as XP's, so it has the same sort of problems.

432

http://www.webdav.org/cadaver/
http://www.ics.uci.edu/~webdav/
http://www.ics.uci.edu/~webdav/

WebDAYV and Autoversioning

With luck, Microsoft will remedy these issuesin a Vista Service Pack.

However, there seem to be workarounds for both XP and Vistathat allow Web Folders to work against Apache. Users have mostly
reported success with these techniques, so wel'll relay them here.

On Windows XP, you have two options. First, search Microsoft's web site for update KB907306, “Software Update for Web
Folders.” This may fix all your problems. If it doesn't, it seems that the original pre-XP Web Folders implementation is still buried
within the system. Y ou can unearth it by going to Network Places and adding a new network place. When prompted, enter the URL
of the repository, but include a port number in the URL. For example, you should enter htt p:// host/repos as ht -
t p: // host: 80/ r epos instead. Respond to any authentication prompts with your Subversion credentials.

On Windows Vista, the same KB907306 update may clear everything up. But there may still be other issues. Some users have re-
ported that Vista considers al htt p:// connections insecure, and thus will aways fail any authentication challenges from
Apache unless the connection happens over ht t ps: / /. If you're unable to connect to the Subversion repository via SSL, you can
tweak the system registry to turn off this behavior. Just change the value of the
HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Servi ces\ WebC i ent \ Par anet er s\ Basi cAut hLeve

| key from 1 to 2. A final warning: be sure to set up the Web Folder to point to the repository's root directory (/), rather than some
subdirectory such as/ t r unk. Vista Web Folders seems to work only against repository roots.

In general, while these workarounds may function for you, you might get a better overall experience using a third-party WebDAV
client such as WebDrive or NetDrive.

Nautilus, Konqueror

Nautilus is the officia file manager/browser for the GNOME desktop (http://www.gnome.org), and Konqueror is the manager/
browser for the KDE desktop (http://www.kde.org). Both of these applications have an explorer-level WebDAYV client built in, and
they operate just fine against an autoversioning repository.

In GNOME's Nautilus, select the File#Open location menu item and enter the URL in the dialog box presented. The repository
should then be displayed like any other filesystem.

In KDE's Konqueror, you need to use the webdav: / / scheme when entering the URL in the location bar. If you enter an ht -
t p: // URL, Konqueror will behave like an ordinary web browser. You'll likely see the generic HTML directory listing produced
by mod_dav_svn. When you enter webdav: / / host / r epos instead of htt p: // host / r epos, Kongueror becomes a Web-
DAV client and displays the repository as a filesystem.

WebDAYV Filesystem Implementation

The WebDAYV filesystem implementation is arguably the best sort of WebDAYV client. It's implemented as a low-level filesystem
module, typically within the operating system'’s kernel. This means that the DAV share is mounted like any other network filesys-
tem, similar to mounting an NFS share on Unix or attaching an SMB share as adrive letter in Windows. As aresult, this sort of cli-
ent provides completely transparent read/write WebDAV access to all programs. Applications aren't even aware that WebDAYV re-
guests are happening.

WebDrive, NetDrive

Both WebDrive and NetDrive are excellent commercial products that alow a WebDAV share to be attached as drive letters in
Windows. As aresult, you can operate on the contents of these WebDAV-backed pseudodrives as easily as you can against real
loca hard drives, and in the same ways. You can purchase WebDrive from South River Technologies (ht-
tp://www.southrivertech.com). Novell's NetDrive is freely available online, but requires users to have a NetWare license.

Mac OS X

Apple's OS X operating system has an integrated filesystem-level WebDAV client. From the Finder, select the Go#Connect to
Server menu item. Enter a WebDAV URL, and it appears as a disk on the desktop, just like any other mounted volume. Y ou can
also mount aWebDAYV share from the Darwin terminal by using the webdav filesystem type with the mount command:

433

http://www.gnome.org
http://www.kde.org
http://www.southrivertech.com
http://www.southrivertech.com

WebDAYV and Autoversioning

$ mount -t webdav http://svn. exanpl e. conl repos/ project /some/ nount poi nt
$

Note that if your mod_dav_svn is older than version 1.2, OS X will refuse to mount the share as read/write; it will appear as read-
only. Thisis because OS X insists on locking support for read/write shares, and the ability to lock files first appeared in Subversion
1.2

Also, OS X's WebDAYV client can sometimes be overly sensitive to HTTP redirects. If OS X is unable to mount the repository at
all, you may need to enable the Br owser Mat ch directivein the Apache server'sht t pd. conf:

Browser Mat ch "~WebDAVFS/ 1. [012]" redirect-carefully

Linux davfs2

Linux davfs2 is afilesystem module for the Linux kernel, whose development is organized at http://dav.sourceforge.net/. Once you
install davfs2, you can mount aWebDAV network share using the usual Linux mount command:

$ nount. davfs http://host/repos /mt/dav

http://dav.sourceforge.net/

Appendix D. Copyright

Copyright (c) 2002-2013 Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato.

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit ht-
tp://creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California
94305, USA.

A summary of the licenseis given below, followed by the full legal text.

You are free:

* to copy, distribute, display, and performthe work
* to nake derivative works
* to nmake commerci al use of the work

Under the followi ng conditions:
Attribution. You nust give the original author credit.

* For any reuse or distribution, you nust nake clear to others the
license terns of this work.

* Any of these conditions can be waived if you get perm ssion from
t he aut hor.

Your fair use and other rights are in no way affected by the above.

The above is a summary of the full Iicense bel ow

Creative Cormmons Legal Code
Attribution 2.0

CREATI VE COVMONS CORPCRATION |'S NOT A LAW FI RM AND DOES NOT PROVI DE
LEGAL SERVI CES. DI STRI BUTI ON OF THI S LI CENSE DCES NOT' CREATE AN
ATTORNEY- CLI ENT RELATI ONSHI P. CREATI VE COVWIONS PROVI DES THI S

I NFORVATI ON ON AN "AS-1S" BASI S. CREATI VE COVWONS MAKES NO WARRANTI ES
REGARDI NG THE | NFORMATI ON PROVI DED, AND DI SCLAI M5 LI ABI LI TY FOR
DAMAGES RESULTI NG FROM I TS USE.

Li cense

THE WORK (AS DEFI NED BELOW | S PROVI DED UNDER THE TERMS OF THI S
CREATI VE COMMONS PUBLI C LI CENSE ("CCPL" OR "LICENSE"). THE WORK | S
PROTECTED BY COPYRI GHT AND/ OR OTHER APPLI CABLE LAW ANY USE OF THE
WORK OTHER THAN AS AUTHORI ZED UNDER THI' S LI CENSE OR COPYRI GHT LAW I S
PROH BI TED.

BY EXERCI SI NG ANY RI GHTS TO THE WORK PROVI DED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THI'S LI CENSE. THE LI CENSOR GRANTS
YOU THE RI GHTS CONTAI NED HERE | N CONSI DERATI ON OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDI Tl ONS.

1. Definitions

a. "Collective Wrk" nmeans a work, such as a periodical issue,
ant hol ogy or encycl opedia, in which the Wirk inits entirety in
unnodified form along with a nunber of other contributions,
constituting separate and i ndependent works in thensel ves, are

435

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Copyright

assenbled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Wrk (as
defined bel ow) for the purposes of this License.

b. "Derivative Wrk" nmeans a work based upon the Wrk or upon the
Work and other pre-existing works, such as a translation
nmusi cal arrangenent, dranatization, fictionalization, notion
pi cture version, sound recording, art reproduction, abridgnent,
condensation, or any other formin which the Wrk may be recast,
transfornmed, or adapted, except that a work that constitutes a
Coll ective Wrk will not be considered a Derivative Wrk for the
purpose of this License. For the avoidance of doubt, where the
Wrk is a nusical conposition or sound recording, the
synchroni zation of the Work in tined-relation with a noving
i mge ("synching") will be considered a Derivative Wrk for the
pur pose of this License.

c. "Licensor" neans the individual or entity that offers the Wrk
under the terms of this License.

d. "Original Author" neans the individual or entity who created the Work

e. "Wirk" nmeans the copyrightabl e work of authorship offered under
the terms of this License.

f. "You" neans an individual or entity exercising rights under this
Li cense who has not previously violated the ternms of this
License with respect to the Wrk, or who has received express
permi ssion fromthe Licensor to exercise rights under this
Li cense despite a previous violation

Fair Use Rights. Nothing in this license is intended to reduce,
limt, or restrict any rights arising fromfair use, first sale or
other limtations on the exclusive rights of the copyright owner
under copyright |aw or other applicable |aws.

Li cense Grant. Subject to the ternms and conditions of this License,
Li censor hereby grants You a worl dwi de, royalty-free,

non- excl usi ve, perpetual (for the duration of the applicable
goPyright) license to exercise the rights in the Wrk as stated

el ow

a. to reproduce the Wrk, to incorporate the Work into one or nore
Col l ective Works, and to reproduce the Work as incorporated in
the Coll ective Wrks;

b. to create and reproduce Derivative WrKks;

c. to distribute copies or phonorecords of, display publicly,
perform publicly, and perform publicly by means of a digita
audi o transni ssion the Wrk including as incorporated in
Col I ective Wrks;

d. to distribute copies or phonorecords of, display publicly,
performpublicly, and performpublicly by nmeans of a digita
audi o transni ssion Derivative Wrks.

For the avoi dance of doubt, where the work is a musical conposition

i. Performance Royalties Under Bl anket Licenses. Licensor
wai ves the exclusive right to collect, whether
individually or via a perfornmance rights society

436

Copyright

(e.g. ASCAP, BM, SESAC), royalties for the public
performance or public digital performance (e.g. webcast)
of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives
the exclusive right to collect, whether individually or
via a nusic rights agency or designated agent (e.g. Harry
Fox Agency), royalties for any phonorecord You create from
the Work ("cover version") and distribute, subject to the
conpul sory license created by 17 USC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoi dance of
doubt, where the Wrk is a sound recording, Licensor waives the
exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for
the public digital performance (e.g. webcast) of the Wrk
subject to the conpulsory license created by 17 USC Section 114
of the US Copyright Act (or the equivalent in other
jurisdictions).

The above rights may be exercised in all nmedia and fornats whet her now
known or hereafter devised. The above rights include the right to nmake
such nodifications as are technically necessary to exercise the rights
in other media and formats. Al rights not expressly granted by

Li censor are hereby reserved.

4. Restrictions.The license granted in Section 3 above is expressly
made subject to and linmited by the followi ng restrictions:

a. You nay distribute, publicly display, publicly perform or
publicly digitally performthe Work only under the terns of this
Li cense, and You nust include a copy of, or the Uniform Resource
Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform or
publicly digitally perform You may not offer or inpose any
terns on the Wrk that alter or restrict the terns of this
Li cense or the recipients' exercise of the rights granted
hereunder. You may not sublicense the Wrk. You nust keep intact
all notices that refer to this License and to the disclalnmer of
warranties. You may not distribute, publicly display, publicly
perform or publicly digitally performthe Wrk with any
technol ogi cal neasures that control access or use of the Work in
a manner inconsistent with the terns of this License
Agreenent. The above applies to the Wirk as incorporated in a
Col l ective Wrk, but this does not require the Collective Wrk
apart fromthe Wrk itself to be nmade subject to the terns of
this License. If You create a Collective Wrk, upon notice from
any Licensor You nust, to the extent practicable, renove from
the Collective Work any reference to such Licensor or the
Oiginal Author, as requested. If You create a Derivative Wrk
upon notice fromany Licensor You nmust, to the extent
practicable, renove fromthe Derivative Wrk any reference to
such Licensor or the Oiginal Author, as requested.

b. If you distribute, publicly display, publicly perform or
publicly digitally performthe Wrk or any Derivative Wrks or
Col l ective Wrks, You nust keep intact all copyright notices for
the Work and give the Original Author credit reasonable to the
medi um or neans You are utilizing by conveying the name (or
pseudonym if applicable) of the Original Author if supplied; the
title of the Work if supplied; to the extent reasonably
practicable, the Uniform Resource Identifier, if any, that
Li censor specifies to be associated with the Wrk, unless such

437

Copyright

URI does not refer to the copyright notice or |icensing
information for the Wirk; and in the case of a Derivative Wrk

a credit identifying the use of the Work in the Derivative Wrk
(e.qg., "French translation of the Wrk by Oiginal Author," or
"Screenplay based on original Wrk by Oiginal Author"). Such
credit nay be inplenented in any reasonabl e manner; provided,
however, that in the case of a Derivative Wrk or Collective
Work, at a mninmumsuch credit will appear where any ot her
conpar abl e authorship credit appears and in a nanner at |east as
prom nent as such other conparable authorship credit.

5. Representations, Warranties and Di scl ai nmer

UNLESS OTHERW SE MUTUALLY AGREED TO BY THE PARTIES I N WRI Tl NG

LI CENSOR OFFERS THE WORK AS-1S AND MAKES NO REPRESENTATI ONS OR
WARRANTI ES OF ANY KI ND CONCERNI NG THE WORK, EXPRESS, | MPLI ED,
STATUTORY OR OTHERW SE, | NCLUDI NG W THOUT LI M TATI ON, WARRANTI ES OF
TI TLE, MERCHANTI BI LI TY, FI TNESS FOR A PARTI CULAR PURPCSE,

NONI NFRI NGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT

DI SCOVERABLE. SQOVE JURI SDI CTI ONS DO NOT ALLOW THE EXCLUSI ON OF | MPLI ED
WARRANTI ES, SO SUCH EXCLUSI ON MAY NOT APPLY TO YOQU.

6. Limtation on Liability. EXCEPT TO THE EXTENT REQUI RED BY
APPL| CABLE LAW I N NO EVENT WLL LI CENSOR BE LI ABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECI AL, | NCI DENTAL, CONSEQUENTI AL, PUNI Tl VE
OR EXEMPLARY DAMAGES ARI SING QUT OF THI' S LI CENSE OR THE USE OF THE
WORK, EVEN | F LI CENSCR HAS BEEN ADVI SED COF THE PCSSI BI LI TY OF SUCH
DAMAGES.

7. Term nation

a.

This License and the rights granted hereunder will term nate
automatically upon any breach by You of the ternms of this

Li cense. Individuals or entities who have received Derivative
Wrks or Collective Wrks from You under this License, however,
will not have their licenses term nated provided such
individuals or entities remain in full conpliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any

term nation of this License.

Subj ect to the above terms and conditions, the |license granted
here is perpetual (for the duration of the applicable copyright
in the Wirk). Notwi thstandi ng the above, Licensor reserves the
right to rel ease the Work under different license terms or to
stop distributing the Wirk at any tinme; provided, however that
any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted
under the ternms of this License), and this License will continue
in full force and effect unless termi nated as stated above.

8. M scel | aneous

a.

C.

Each time You distribute or publicly digitally performthe Wrk
or a Collective Wrk, the Licensor offers to the recipient a
license to the Wirk on the sanme terns and conditions as the
license granted to You under this License.

Each time You distribute or publicly digitally performa
Derivative Wrk, Licensor offers to the recipient a license to
the original Wrk on the sane terns and conditions as the
license granted to You under this License.

If any provision of this License is invalid or unenforceable

438

Copyright

under applicable law, it shall not affect the validity or
enforceability of the remainder of the terns of this License,
and wi thout further action by the parties to this agreenent,
such provision shall be reforned to the nini nrum extent necessary
to make such provision valid and enforceabl e.

d. No termor provision of this License shall be deemed wai ved and
no breach consented to unl ess such waiver or consent shall be in
witing and signed by the party to be charged with such wai ver
or consent.

e. This License constitutes the entire agreenment between the
parties with respect to the Wirk |licensed here. There are no
under st andi ngs, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any
addi ti onal provisions that may appear in any conmmunication from
You. This License nmay not be nodified without the nutual witten
agreenent of the Licensor and You

Creative Commons is not a party to this License, and nmakes no warranty
what soever in connection wth the Work. Creative Comons will not be
liable to You or any party on any |legal theory for any danages

what soever, including without linmitation any general, special

i nci dental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Conmons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor

Except for the linmted purpose of indicating to the public that the
Wrk is licensed under the CCPL, neither party will use the trademark
"Creative Conmons" or any related trademark or | ogo of Creative
Conmons without the prior witten consent of Creative Comobns. Any
permtted use will be in conpliance with Creative Conmobns

t hen-current trademark usage guidelines, as may be published on its
website or otherw se nade avail abl e upon request fromtinme to tinmne.

Creative Conmons may be contacted at http://creativeconmons. org/.

439

Index

A
ancestry, 127

B
BASE, 47
branches, 17, 97

C

checkout (see working copy, creation)
CollabNet, xv
COMMITTED, 48
committing (see working copy, commit)
Concurrent Versions System, xiv
conflicts, 6
conflict markers, 29
resolution, 32
interactive, 28
manual, 30
postponing, 29
resolving, 26
reviewing, 28
CV'S (see Concurrent Versions System)

D
delta, 22

H
HEAD, 47

L
log message, 22

M

merge tracking, 103
mergeinfo, 104

mergeinfo elision, 108
mergeinfo inheritance, 112
mod_dav_svn, xvii

P

patches, 25

PREV, 48

project root, 17, 144
properties, 53

R
repository
defined, 1
hooks
post-commit, 413

post-lock, 417
post-revprop-change, 415
post-unlock, 419
pre-commit, 412
pre-lock, 416
pre-revprop-change, 414
pre-unlock, 418
start-commit, 411
revisions

as dates, 48

defined, 7

global, 8

keywords, 47
BASE, 47
COMMITTED, 48
HEAD, 47
PREV, 48

S

SCM (see software configuration management)

software configuration management, Xiv
subtree merge, 108
subtree mergeinfo, 108
Subversion
architecture, xv
components, xvii
defined, xiv
history of, xv, xvii
svn, xvii
options, 16
subcommands
add, 21, 259
blame, 261
cat, 263
changelist, 265
checkout, 11, 18, 266
cleanup, 270
commit, 12, 271
copy, 21, 273
delete, 21, 276
diff, 24, 278
export, 282
help, 15, 284
import, 16, 285
info, 287
list, 290
lock, 292
log, 293
merge, 298
mergeinfo, 301
mkdir, 21, 302
move, 21, 303
patch, 305
propdel, 308
propedit, 309
propget, 310
proplist, 312
propset, 314

Index

rel ocate, 316
resolve, 319
resolved, 320
revert, 25, 321
status, 22, 323
switch, 328
unlock, 330

update, 12, 20, 331

upgrade, 334

syntax

URLs, 8

svnadmin, Xvii
subcommands

crashtest, 337
create, 338
deltify, 339
dump, 340
help, 342
hotcopy, 343

list-dblogs, 344
list-unused-dblogs, 345

load, 346
Islocks, 348
Istxns, 349
pack, 350
recover, 351
rmlocks, 353
rmtxns, 354
setlog, 355

setrevprop, 356

setuuid, 357
upgrade, 358
verify, 359

subcommands
dump, 392
help, 393
load, 394
svnserve, Xvii
SVNsync, Xvii
subcommands
copy-revprops, 383
help, 385
info, 386
initialize, 387
synchronize, 389
syntax
URLs, 8
svnversion, xvii, 403

T
tags, 17, 132
text-base, 22
trunk, 17

U
unified diff, 24
updating (see working copy, update)

\Y

V CS (see version control systems)
version control
models
copy-modify-merge, 4
lock-modify-unlock, 3
version control systems, xiv, 1

svndumpfilter, xvii
subcommands W
exclude, 398)
help, 402 working copy

i commit, 12
include, 400 Lo
svnlook, xvii creation, 11

subcommands defined, 2, 9
author, 362 mixed-revision, 12

cat, 363 update, 12

changed, 364

date, 366

diff, 367

dirs-changed, 368

filesize, 369

help, 370

history, 371

info, 372

lock, 373

log, 374

propget, 375

proplist, 376

tree, 377

uuid, 379

youngest, 380
svnrdump

441

	Version Control with Subversion
	Table of Contents
	Foreword
	Preface
	What Is Subversion?
	Is Subversion the Right Tool?
	Subversion's History
	Subversion's Architecture
	Subversion's Components
	What's New in Subversion

	Audience
	How to Read This Book
	Organization of This Book
	This Book Is Free
	Acknowledgments

	Chapter 1. Fundamental Concepts
	Version Control Basics
	The Repository
	The Working Copy
	Versioning Models
	The problem of file sharing
	The lock-modify-unlock solution
	The copy-modify-merge solution

	Version Control the Subversion Way
	Subversion Repositories
	Revisions
	Addressing the Repository
	Subversion Working Copies
	How the working copy works
	Fundamental working copy interactions
	Mixed-revision working copies
	Updates and commits are separate
	Mixed revisions are normal
	Mixed revisions are useful
	Mixed revisions have limitations

	Summary

	Chapter 2. Basic Usage
	Help!
	Getting Data into Your Repository
	Importing Files and Directories
	Recommended Repository Layout
	What's In a Name?

	Creating a Working Copy
	Basic Work Cycle
	Update Your Working Copy
	Make Your Changes
	Review Your Changes
	See an overview of your changes
	Examine the details of your local modifications

	Fix Your Mistakes
	Resolve Any Conflicts
	Viewing conflict differences interactively
	Resolving conflict differences interactively
	Postponing conflict resolution
	Merging conflicts by hand
	Discarding your changes in favor of a newly fetched revision
	Punting: using svn revert

	Commit Your Changes

	Examining History
	Examining the Details of Historical Changes
	Examining local changes
	Comparing working copy to repository
	Comparing repository revisions

	Generating a List of Historical Changes
	Browsing the Repository
	svn cat
	svn list

	Fetching Older Repository Snapshots

	Sometimes You Just Need to Clean Up
	Disposing of a Working Copy
	Recovering from an Interruption

	Dealing with Structural Conflicts
	An Example Tree Conflict

	Summary

	Chapter 3. Advanced Topics
	Revision Specifiers
	Revision Keywords
	Revision Dates

	Peg and Operative Revisions
	Properties
	Why Properties?
	Manipulating Properties
	Properties and the Subversion Workflow
	Automatic Property Setting

	File Portability
	File Content Type
	File Executability
	End-of-Line Character Sequences

	Ignoring Unversioned Items
	Keyword Substitution
	Sparse Directories
	Locking
	Creating Locks
	Discovering Locks
	Breaking and Stealing Locks
	Lock Communication

	Externals Definitions
	Changelists
	Creating and Modifying Changelists
	Changelists As Operation Filters
	Changelist Limitations

	Network Model
	Requests and Responses
	Client Credentials
	Caching credentials
	Disabling password caching
	Removing cached credentials
	Command-line authentication
	Authentication wrap-up

	Summary

	Chapter 4. Branching and Merging
	What's a Branch?
	Using Branches
	Creating a Branch
	Working with Your Branch
	The Key Concepts Behind Branching

	Basic Merging
	Changesets
	Keeping a Branch in Sync
	Reintegrating a Branch
	Mergeinfo and Previews
	Undoing Changes
	Resurrecting Deleted Items

	Advanced Merging
	Cherrypicking
	Merge Syntax: Full Disclosure
	Merges Without Mergeinfo
	More on Merge Conflicts
	Blocking Changes
	Keeping a Reintegrated Branch Alive
	Merge-Sensitive Logs and Annotations
	Noticing or Ignoring Ancestry
	Merges and Moves
	Blocking Merge-Unaware Clients
	The Final Word on Merge Tracking

	Traversing Branches
	Tags
	Creating a Simple Tag
	Creating a Complex Tag

	Branch Maintenance
	Repository Layout
	Data Lifetimes

	Common Branching Patterns
	Release Branches
	Feature Branches

	Vendor Branches
	General Vendor Branch Management Procedure
	svn_load_dirs.pl

	Summary

	Chapter 5. Repository Administration
	The Subversion Repository, Defined
	Strategies for Repository Deployment
	Planning Your Repository Organization
	Deciding Where and How to Host Your Repository
	Choosing a Data Store
	Berkeley DB
	FSFS

	Creating and Configuring Your Repository
	Creating the Repository
	Implementing Repository Hooks
	Berkeley DB Configuration
	FSFS Configuration

	Repository Maintenance
	An Administrator's Toolkit
	svnadmin
	svnlook
	svndumpfilter
	svnrdump
	svnsync
	fsfs-reshard.py
	Berkeley DB utilities

	Commit Log Message Correction
	Managing Disk Space
	How Subversion saves disk space
	Removing dead transactions
	Purging unused Berkeley DB logfiles
	Packing FSFS filesystems

	Berkeley DB Recovery
	Migrating Repository Data Elsewhere
	Repository data migration using svnadmin
	Repository data migration using svnrdump

	Filtering Repository History
	Repository Replication
	Replication with svnsync
	Partial replication with svnsync
	A quick trick for mirror creation
	Replication wrap-up

	Repository Backup
	Managing Repository UUIDs

	Moving and Removing Repositories
	Summary

	Chapter 6. Server Configuration
	Overview
	Choosing a Server Configuration
	The svnserve Server
	svnserve over SSH
	The Apache HTTP Server
	Recommendations

	svnserve, a Custom Server
	Invoking the Server
	svnserve as daemon
	svnserve via inetd
	svnserve over a tunnel
	svnserve as a Windows service
	svnserve as a launchd job

	Built-in Authentication and Authorization
	Create a users file and realm
	Set access controls

	Using svnserve with SASL
	Authenticating with SASL
	SASL encryption

	Tunneling over SSH
	SSH Configuration Tricks
	Initial setup
	Controlling the invoked command

	httpd, the Apache HTTP Server
	Prerequisites
	Basic Apache Configuration
	Authentication Options
	Basic authentication
	Digest authentication

	Authorization Options
	Blanket access control
	Per-directory access control
	Disabling path-based checks

	Protecting network traffic with SSL
	Subversion server SSL certificate configuration
	Subversion client SSL certificate management
	Server certificate
	Client certificate challenge

	Extra Goodies
	Repository browsing
	URL syntax
	Proper MIME type
	Customizing the look
	Listing repositories

	Apache logging
	Write-through proxying
	Configure the servers
	Set up replication
	Caveats

	Other Apache features

	Path-Based Authorization
	High-level Logging
	Server Optimization
	Data Caching
	Network Compression of Data

	Supporting Multiple Repository Access Methods

	Chapter 7. Customizing Your Subversion Experience
	Runtime Configuration Area
	Configuration Area Layout
	Configuration and the Windows Registry
	Configuration Options
	Servers
	Config

	Localization
	Understanding Locales
	Subversion's Use of Locales

	Using External Editors
	Using External Differencing and Merge Tools
	External diff
	External diff3
	External merge

	Summary

	Chapter 8. Embedding Subversion
	Layered Library Design
	Repository Layer
	Repository Access Layer
	Client Layer

	Using the APIs
	The Apache Portable Runtime Library
	Functions and Batons
	URL and Path Requirements
	Using Languages Other Than C and C++
	Code Samples

	Summary

	Chapter 9. Subversion Complete Reference
	svn—Subversion Command-Line Client
	svn Options
	svn Subcommands
	svn add
	svn blame (praise, annotate, ann)
	svn cat
	svn changelist (cl)
	svn checkout (co)
	svn cleanup
	svn commit (ci)
	svn copy (cp)
	svn delete (del, remove, rm)
	svn diff (di)
	svn export
	svn help (h, ?)
	svn import
	svn info
	svn list (ls)
	svn lock
	svn log
	svn merge
	svn mergeinfo
	svn mkdir
	svn move (mv)
	svn patch
	svn propdel (pdel, pd)
	svn propedit (pedit, pe)
	svn propget (pget, pg)
	svn proplist (plist, pl)
	svn propset (pset, ps)
	svn relocate
	svn resolve
	svn resolved
	svn revert
	svn status (stat, st)
	svn switch (sw)
	svn unlock
	svn update (up)
	svn upgrade

	svnadmin—Subversion Repository Administration
	svnadmin Options
	svnadmin Subcommands
	svnadmin crashtest
	svnadmin create
	svnadmin deltify
	svnadmin dump
	svnadmin help (h, ?)
	svnadmin hotcopy
	svnadmin list-dblogs
	svnadmin list-unused-dblogs
	svnadmin load
	svnadmin lslocks
	svnadmin lstxns
	svnadmin pack
	svnadmin recover
	svnadmin rmlocks
	svnadmin rmtxns
	svnadmin setlog
	svnadmin setrevprop
	svnadmin setuuid
	svnadmin upgrade
	svnadmin verify

	svnlook—Subversion Repository Examination
	svnlook Options
	svnlook Subcommands
	svnlook author
	svnlook cat
	svnlook changed
	svnlook date
	svnlook diff
	svnlook dirs-changed
	svnlook filesize
	svnlook help (h, ?)
	svnlook history
	svnlook info
	svnlook lock
	svnlook log
	svnlook propget (pget, pg)
	svnlook proplist (plist, pl)
	svnlook tree
	svnlook uuid
	svnlook youngest

	svnsync—Subversion Repository Mirroring
	svnsync Options
	svnsync Subcommands
	svnsync copy-revprops
	svnsync help
	svnsync info
	svnsync initialize (init)
	svnsync synchronize (sync)

	svnrdump—Remote Subversion Repository Data Migration
	svnrdump Options
	svnrdump Subcommands
	svnrdump dump
	svnrdump help
	svnrdump load

	svnserve—Custom Subversion Server
	svnserve Options

	svndumpfilter—Subversion History Filtering
	svndumpfilter Options
	svndumpfilter Subcommands
	svndumpfilter exclude
	svndumpfilter include
	svndumpfilter help

	svnversion—Subversion Working Copy Version Info
	svnversion

	mod_dav_svn—Subversion Apache HTTP Server Module
	mod_dav_svn Configuration Directives

	mod_authz_svn—Subversion Apache HTTP Authorization Module
	mod_authz_svn Configuration Directives

	Subversion Properties
	Versioned Properties
	Unversioned Properties

	Repository Hooks
	start-commit
	pre-commit
	post-commit
	pre-revprop-change
	post-revprop-change
	pre-lock
	post-lock
	pre-unlock
	post-unlock

	Appendix A. Subversion Quick-Start Guide
	Installing Subversion
	High-Speed Tutorial

	Appendix B. Subversion for CVS Users
	Revision Numbers Are Different Now
	Directory Versions
	More Disconnected Operations
	Distinction Between Status and Update
	Status
	Update

	Branches and Tags
	Metadata Properties
	Conflict Resolution
	Binary Files and Translation
	Versioned Modules
	Authentication
	Converting a Repository from CVS to Subversion

	Appendix C. WebDAV and Autoversioning
	What Is WebDAV?
	Autoversioning
	Client Interoperability
	Standalone WebDAV Applications
	Microsoft Office, Dreamweaver, Photoshop
	cadaver, DAV Explorer

	File-Explorer WebDAV Extensions
	Microsoft Web Folders
	Nautilus, Konqueror

	WebDAV Filesystem Implementation
	WebDrive, NetDrive
	Mac OS X
	Linux davfs2

	Appendix D. Copyright
	Index

