
1

Brian Remmington

Alfresco Product Architect

2

• A demonstration

• The Web Quick Start model

• Overview of the features in the repository tier

• Overview of the sample web application

Primary goal:

• To show you how Web Quick Start works so you can start to use it

and extend it

What we’ll cover

3

4

ws:website ws:webroot ws:section

ws:webassetCollection ws:webasset

ws:visitorFeedback

5

• Groups of assets that are
uniquely named within the
scope of a particular section

• Static asset collections

• Editor control over which
assets are included

• Dynamic asset collections

• Configured with a search
query, maximum number of
results, and a refresh period in
minutes

• The query is executed
periodically (as configured),
and the results are placed in
the asset collection

• CMIS and Lucene supported

6

• Queries can contain
references to sections using
the “section” placeholder:

• ${section:.} is the section that
owns the asset collection

• ${section:/} is the root
section of the website

• ${section:..} is the parent of
this collection’s section

• ${section:/news/global} is the
section at the path
“news/global” from the root

• You can plug in your own
placeholders too

7

• Queries can contain
references to sections using
the “section” placeholder:

• ${section:.} is the section that
owns the asset collection

• ${section:/} is the root
section of the website

• ${section:..} is the parent of
this collection’s section

• ${section:/news/global} is the
section at the path
“news/global” from the root

• You can plug in your own
placeholders too

8

• Each section may define what renditions should be created

when an asset is added or updated

• The configuration allows rendition definitions to be related

to asset types (both by content type and MIME type)

• Rendition definitions are defined in a Spring bean named

“wqsmodule_renditionDefinitions” (defaults are in the file

“rendition-context.xml”)

• Each section may either inherit the rendition configuration

from its parent section or not

9

• Each section may define what renditions should be created

when an asset is added or updated

• The configuration allows rendition definitions to be related

to asset types (both by content type and MIME type)

• Rendition definitions are defined in a Spring bean named

“wqsmodule_renditionDefinitions” (defaults are in the file

“rendition-context.xml”)

• Each section may either inherit the rendition configuration

from its parent section or not

10

• Each website has a

corresponding data list for

feedback (auto-created)

• New entries are

periodically processed –

each type of feedback can

have its own handler

defined
• CommentFeedbackProcessorHandler

• feedbackType = “Comment”

• ContactFeedbackProcessorHandler

• feedbackType = “Contact Request”

<bean id="commentFeedbackProcessorHandler" parent="feedbackProcessorHandler"

 class="org.alfresco.module.org_alfresco_module_wcmquickstart.jobs.feedback.CommentFeedbackProcessorHandler">

 <property name="feedbackType" value="Comment" />

</bean>

11

• Each website has a publishing queue

• WQS has a PublishService that processes the queues

• Two actions defined: “webqs_publishTree” and

“webqs_publish”

• Two workflows defined that use the actions

• Queues are published periodically – every minute by

default (override with property wcmqs.publishQueueProcessor.schedule)

• Each website node may specify another website node that

it publishes to

12

• Override map of available ACP files using a bean named

“wqsmodule_siteImportFileLocations”

13

WQS API

14

Bean “webSiteService” is a

good starting point:

15

16

• “Friendly” URLs

• The requested URL is parsed to find the website, section,

and asset that are being addressed

www.example.com/news/global/financial_outlook_good

• The resolved API objects are stored on the request

context with the names “website”, “section”, and “asset”

for use by page components.

website

section

asset

17

• Wired in to respond

whenever an asset has

been resolved

• Discovers the page name

to be used to render the

asset

• Each section may define

template mappings from

asset type to view name

• Searches up the type

hierarchy first, then the

section hierarchy

18

19

20

Think of “templates” as layouts:

HTML with holes cut out (“regions”)

21

The webscripts folder

contains components:

HTML fragments that can

be used to fill in regions

22

For example, there are two

components that render

article details: “article/style1”

and “article/style2”

The webscripts folder

contains components:

HTML fragments that can

be used to fill in regions

23

Finally, pages weave

templates and components

together: a page specifies

a template and which

components are to fill which

regions in that template

24

25

26

five-block.ftl

27

bellyband

left1
right1

bottom-left bottom-right

28

For example, the region

“left1” is populated by

the component “list/wide”.

This component accepts

a property named

“collection” – in this case

the value of that property

is being set to “news.top”

29

bottom-left bottom-right

webscripts/list/wide.get.js

webscripts/list/wide.get.html.ftl

The “list/wide” component loads the named asset

collection (“news.top” in this example), and then

renders information about each asset in that

asset collection

30

left1

31

wiki.alfresco.com/wiki/Web_Quick_Start

forums.alfresco.com/en/viewforum.php?f=52

twitter: @Alfresco, @brianremmington

