Mario Romano 29df96a085 react app
2016-04-06 17:52:19 +01:00

477 lines
14 KiB
JavaScript

// This file contains methods responsible for introspecting the current path for certain values.
"use strict";
var _interopRequireDefault = require("babel-runtime/helpers/interop-require-default")["default"];
var _interopRequireWildcard = require("babel-runtime/helpers/interop-require-wildcard")["default"];
exports.__esModule = true;
exports.matchesPattern = matchesPattern;
exports.has = has;
exports.isStatic = isStatic;
exports.isnt = isnt;
exports.equals = equals;
exports.isNodeType = isNodeType;
exports.canHaveVariableDeclarationOrExpression = canHaveVariableDeclarationOrExpression;
exports.canSwapBetweenExpressionAndStatement = canSwapBetweenExpressionAndStatement;
exports.isCompletionRecord = isCompletionRecord;
exports.isStatementOrBlock = isStatementOrBlock;
exports.referencesImport = referencesImport;
exports.getSource = getSource;
exports.willIMaybeExecuteBefore = willIMaybeExecuteBefore;
exports._guessExecutionStatusRelativeTo = _guessExecutionStatusRelativeTo;
exports._guessExecutionStatusRelativeToDifferentFunctions = _guessExecutionStatusRelativeToDifferentFunctions;
exports.resolve = resolve;
exports._resolve = _resolve;
var _lodashCollectionIncludes = require("lodash/collection/includes");
var _lodashCollectionIncludes2 = _interopRequireDefault(_lodashCollectionIncludes);
var _babelTypes = require("babel-types");
var t = _interopRequireWildcard(_babelTypes);
/**
* Match the current node if it matches the provided `pattern`.
*
* For example, given the match `React.createClass` it would match the
* parsed nodes of `React.createClass` and `React["createClass"]`.
*/
function matchesPattern(pattern, allowPartial) {
// not a member expression
if (!this.isMemberExpression()) return false;
var parts = pattern.split(".");
var search = [this.node];
var i = 0;
function matches(name) {
var part = parts[i];
return part === "*" || name === part;
}
while (search.length) {
var node = search.shift();
if (allowPartial && i === parts.length) {
return true;
}
if (t.isIdentifier(node)) {
// this part doesn't match
if (!matches(node.name)) return false;
} else if (t.isLiteral(node)) {
// this part doesn't match
if (!matches(node.value)) return false;
} else if (t.isMemberExpression(node)) {
if (node.computed && !t.isLiteral(node.property)) {
// we can't deal with this
return false;
} else {
search.unshift(node.property);
search.unshift(node.object);
continue;
}
} else if (t.isThisExpression(node)) {
if (!matches("this")) return false;
} else {
// we can't deal with this
return false;
}
// too many parts
if (++i > parts.length) {
return false;
}
}
return i === parts.length;
}
/**
* Check whether we have the input `key`. If the `key` references an array then we check
* if the array has any items, otherwise we just check if it's falsy.
*/
function has(key) {
var val = this.node && this.node[key];
if (val && Array.isArray(val)) {
return !!val.length;
} else {
return !!val;
}
}
/**
* Description
*/
function isStatic() {
return this.scope.isStatic(this.node);
}
/**
* Alias of `has`.
*/
var is = has;
exports.is = is;
/**
* Opposite of `has`.
*/
function isnt(key) {
return !this.has(key);
}
/**
* Check whether the path node `key` strict equals `value`.
*/
function equals(key, value) {
return this.node[key] === value;
}
/**
* Check the type against our stored internal type of the node. This is handy when a node has
* been removed yet we still internally know the type and need it to calculate node replacement.
*/
function isNodeType(type) {
return t.isType(this.type, type);
}
/**
* This checks whether or not we're in one of the following positions:
*
* for (KEY in right);
* for (KEY;;);
*
* This is because these spots allow VariableDeclarations AND normal expressions so we need
* to tell the path replacement that it's ok to replace this with an expression.
*/
function canHaveVariableDeclarationOrExpression() {
return (this.key === "init" || this.key === "left") && this.parentPath.isFor();
}
/**
* This checks whether we are swapping an arrow function's body between an
* expression and a block statement (or vice versa).
*
* This is because arrow functions may implicitly return an expression, which
* is the same as containing a block statement.
*/
function canSwapBetweenExpressionAndStatement(replacement) {
if (this.key !== "body" || !this.parentPath.isArrowFunctionExpression()) {
return false;
}
if (this.isExpression()) {
return t.isBlockStatement(replacement);
} else if (this.isBlockStatement()) {
return t.isExpression(replacement);
}
return false;
}
/**
* Check whether the current path references a completion record
*/
function isCompletionRecord(allowInsideFunction) {
var path = this;
var first = true;
do {
var container = path.container;
// we're in a function so can't be a completion record
if (path.isFunction() && !first) {
return !!allowInsideFunction;
}
first = false;
// check to see if we're the last item in the container and if we are
// we're a completion record!
if (Array.isArray(container) && path.key !== container.length - 1) {
return false;
}
} while ((path = path.parentPath) && !path.isProgram());
return true;
}
/**
* Check whether or not the current `key` allows either a single statement or block statement
* so we can explode it if necessary.
*/
function isStatementOrBlock() {
if (this.parentPath.isLabeledStatement() || t.isBlockStatement(this.container)) {
return false;
} else {
return _lodashCollectionIncludes2["default"](t.STATEMENT_OR_BLOCK_KEYS, this.key);
}
}
/**
* Check if the currently assigned path references the `importName` of `moduleSource`.
*/
function referencesImport(moduleSource, importName) {
if (!this.isReferencedIdentifier()) return false;
var binding = this.scope.getBinding(this.node.name);
if (!binding || binding.kind !== "module") return false;
var path = binding.path;
var parent = path.parentPath;
if (!parent.isImportDeclaration()) return false;
// check moduleSource
if (parent.node.source.value === moduleSource) {
if (!importName) return true;
} else {
return false;
}
if (path.isImportDefaultSpecifier() && importName === "default") {
return true;
}
if (path.isImportNamespaceSpecifier() && importName === "*") {
return true;
}
if (path.isImportSpecifier() && path.node.imported.name === importName) {
return true;
}
return false;
}
/**
* Get the source code associated with this node.
*/
function getSource() {
var node = this.node;
if (node.end) {
return this.hub.file.code.slice(node.start, node.end);
} else {
return "";
}
}
function willIMaybeExecuteBefore(target) {
return this._guessExecutionStatusRelativeTo(target) !== "after";
}
/**
* Given a `target` check the execution status of it relative to the current path.
*
* "Execution status" simply refers to where or not we **think** this will execuete
* before or after the input `target` element.
*/
function _guessExecutionStatusRelativeTo(target) {
// check if the two paths are in different functions, we can't track execution of these
var targetFuncParent = target.scope.getFunctionParent();
var selfFuncParent = this.scope.getFunctionParent();
// here we check the `node` equality as sometimes we may have different paths for the
// same node due to path thrashing
if (targetFuncParent.node !== selfFuncParent.node) {
var _status = this._guessExecutionStatusRelativeToDifferentFunctions(targetFuncParent);
if (_status) {
return _status;
} else {
target = targetFuncParent.path;
}
}
var targetPaths = target.getAncestry();
if (targetPaths.indexOf(this) >= 0) return "after";
var selfPaths = this.getAncestry();
// get ancestor where the branches intersect
var commonPath = undefined;
var targetIndex = undefined;
var selfIndex = undefined;
for (selfIndex = 0; selfIndex < selfPaths.length; selfIndex++) {
var selfPath = selfPaths[selfIndex];
targetIndex = targetPaths.indexOf(selfPath);
if (targetIndex >= 0) {
commonPath = selfPath;
break;
}
}
if (!commonPath) {
return "before";
}
// get the relationship paths that associate these nodes to their common ancestor
var targetRelationship = targetPaths[targetIndex - 1];
var selfRelationship = selfPaths[selfIndex - 1];
if (!targetRelationship || !selfRelationship) {
return "before";
}
// container list so let's see which one is after the other
if (targetRelationship.listKey && targetRelationship.container === selfRelationship.container) {
return targetRelationship.key > selfRelationship.key ? "before" : "after";
}
// otherwise we're associated by a parent node, check which key comes before the other
var targetKeyPosition = t.VISITOR_KEYS[targetRelationship.type].indexOf(targetRelationship.key);
var selfKeyPosition = t.VISITOR_KEYS[selfRelationship.type].indexOf(selfRelationship.key);
return targetKeyPosition > selfKeyPosition ? "before" : "after";
}
function _guessExecutionStatusRelativeToDifferentFunctions(targetFuncParent) {
var targetFuncPath = targetFuncParent.path;
if (!targetFuncPath.isFunctionDeclaration()) return;
// so we're in a completely different function, if this is a function declaration
// then we can be a bit smarter and handle cases where the function is either
// a. not called at all (part of an export)
// b. called directly
var binding = targetFuncPath.scope.getBinding(targetFuncPath.node.id.name);
// no references!
if (!binding.references) return "before";
var referencePaths = binding.referencePaths;
// verify that all of the references are calls
for (var _i = 0; _i < referencePaths.length; _i++) {
var path = referencePaths[_i];
if (path.key !== "callee" || !path.parentPath.isCallExpression()) {
return;
}
}
var allStatus = undefined;
// verify that all the calls have the same execution status
for (var _i2 = 0; _i2 < referencePaths.length; _i2++) {
var path = referencePaths[_i2];
// if a reference is a child of the function we're checking against then we can
// safelty ignore it
var childOfFunction = !!path.find(function (path) {
return path.node === targetFuncPath.node;
});
if (childOfFunction) continue;
var _status2 = this._guessExecutionStatusRelativeTo(path);
if (allStatus) {
if (allStatus !== _status2) return;
} else {
allStatus = _status2;
}
}
return allStatus;
}
/**
* Resolve a "pointer" `NodePath` to it's absolute path.
*/
function resolve(dangerous, resolved) {
return this._resolve(dangerous, resolved) || this;
}
function _resolve(dangerous, resolved) {
// istanbul ignore next
var _this = this;
// detect infinite recursion
// todo: possibly have a max length on this just to be safe
if (resolved && resolved.indexOf(this) >= 0) return;
// we store all the paths we've "resolved" in this array to prevent infinite recursion
resolved = resolved || [];
resolved.push(this);
if (this.isVariableDeclarator()) {
if (this.get("id").isIdentifier()) {
return this.get("init").resolve(dangerous, resolved);
} else {
// otherwise it's a request for a pattern and that's a bit more tricky
}
} else if (this.isReferencedIdentifier()) {
var binding = this.scope.getBinding(this.node.name);
if (!binding) return;
// reassigned so we can't really resolve it
if (!binding.constant) return;
// todo - lookup module in dependency graph
if (binding.kind === "module") return;
if (binding.path !== this) {
var _ret = (function () {
var ret = binding.path.resolve(dangerous, resolved);
// If the identifier resolves to parent node then we can't really resolve it.
if (_this.find(function (parent) {
return parent.node === ret.node;
})) return {
v: undefined
};
return {
v: ret
};
})();
// istanbul ignore next
if (typeof _ret === "object") return _ret.v;
}
} else if (this.isTypeCastExpression()) {
return this.get("expression").resolve(dangerous, resolved);
} else if (dangerous && this.isMemberExpression()) {
// this is dangerous, as non-direct target assignments will mutate it's state
// making this resolution inaccurate
var targetKey = this.toComputedKey();
if (!t.isLiteral(targetKey)) return;
var targetName = targetKey.value;
var target = this.get("object").resolve(dangerous, resolved);
if (target.isObjectExpression()) {
var props = target.get("properties");
var _arr = props;
for (var _i3 = 0; _i3 < _arr.length; _i3++) {
var prop = _arr[_i3];
if (!prop.isProperty()) continue;
var key = prop.get("key");
// { foo: obj }
var match = prop.isnt("computed") && key.isIdentifier({ name: targetName });
// { "foo": "obj" } or { ["foo"]: "obj" }
match = match || key.isLiteral({ value: targetName });
if (match) return prop.get("value").resolve(dangerous, resolved);
}
} else if (target.isArrayExpression() && !isNaN(+targetName)) {
var elems = target.get("elements");
var elem = elems[targetName];
if (elem) return elem.resolve(dangerous, resolved);
}
}
}