Mario Romano 29df96a085 react app
2016-04-06 17:52:19 +01:00

282 lines
7.5 KiB
JavaScript

// This file contains that retrieve or validate anything related to the current paths ancestry.
"use strict";
var _interopRequireWildcard = require("babel-runtime/helpers/interop-require-wildcard")["default"];
var _interopRequireDefault = require("babel-runtime/helpers/interop-require-default")["default"];
exports.__esModule = true;
exports.findParent = findParent;
exports.find = find;
exports.getFunctionParent = getFunctionParent;
exports.getStatementParent = getStatementParent;
exports.getEarliestCommonAncestorFrom = getEarliestCommonAncestorFrom;
exports.getDeepestCommonAncestorFrom = getDeepestCommonAncestorFrom;
exports.getAncestry = getAncestry;
exports.inType = inType;
exports.inShadow = inShadow;
var _babelTypes = require("babel-types");
var t = _interopRequireWildcard(_babelTypes);
var _index = require("./index");
var _index2 = _interopRequireDefault(_index);
/**
* Call the provided `callback` with the `NodePath`s of all the parents.
* When the `callback` returns a truthy value, we return that node path.
*/
function findParent(callback) {
var path = this;
while (path = path.parentPath) {
if (callback(path)) return path;
}
return null;
}
/**
* Description
*/
function find(callback) {
var path = this;
do {
if (callback(path)) return path;
} while (path = path.parentPath);
return null;
}
/**
* Get the parent function of the current path.
*/
function getFunctionParent() {
return this.findParent(function (path) {
return path.isFunction() || path.isProgram();
});
}
/**
* Walk up the tree until we hit a parent node path in a list.
*/
function getStatementParent() {
var path = this;
do {
if (Array.isArray(path.container)) {
return path;
}
} while (path = path.parentPath);
}
/**
* Get the deepest common ancestor and then from it, get the earliest relationship path
* to that ancestor.
*
* Earliest is defined as being "before" all the other nodes in terms of list container
* position and visiting key.
*/
function getEarliestCommonAncestorFrom(paths) {
return this.getDeepestCommonAncestorFrom(paths, function (deepest, i, ancestries) {
var earliest = undefined;
var keys = t.VISITOR_KEYS[deepest.type];
var _arr = ancestries;
for (var _i = 0; _i < _arr.length; _i++) {
var ancestry = _arr[_i];
var path = ancestry[i + 1];
// first path
if (!earliest) {
earliest = path;
continue;
}
// handle containers
if (path.listKey && earliest.listKey === path.listKey) {
// we're in the same container so check if we're earlier
if (path.key < earliest.key) {
earliest = path;
continue;
}
}
// handle keys
var earliestKeyIndex = keys.indexOf(earliest.parentKey);
var currentKeyIndex = keys.indexOf(path.parentKey);
if (earliestKeyIndex > currentKeyIndex) {
// key appears before so it's earlier
earliest = path;
}
}
return earliest;
});
}
/**
* Get the earliest path in the tree where the provided `paths` intersect.
*
* TODO: Possible optimisation target.
*/
function getDeepestCommonAncestorFrom(paths, filter) {
// istanbul ignore next
var _this = this;
if (!paths.length) {
return this;
}
if (paths.length === 1) {
return paths[0];
}
// minimum depth of the tree so we know the highest node
var minDepth = Infinity;
// last common ancestor
var lastCommonIndex = undefined,
lastCommon = undefined;
// get the ancestors of the path, breaking when the parent exceeds ourselves
var ancestries = paths.map(function (path) {
var ancestry = [];
do {
ancestry.unshift(path);
} while ((path = path.parentPath) && path !== _this);
// save min depth to avoid going too far in
if (ancestry.length < minDepth) {
minDepth = ancestry.length;
}
return ancestry;
});
// get the first ancestry so we have a seed to assess all other ancestries with
var first = ancestries[0];
// check ancestor equality
depthLoop: for (var i = 0; i < minDepth; i++) {
var shouldMatch = first[i];
var _arr2 = ancestries;
for (var _i2 = 0; _i2 < _arr2.length; _i2++) {
var ancestry = _arr2[_i2];
if (ancestry[i] !== shouldMatch) {
// we've hit a snag
break depthLoop;
}
}
// next iteration may break so store these so they can be returned
lastCommonIndex = i;
lastCommon = shouldMatch;
}
if (lastCommon) {
if (filter) {
return filter(lastCommon, lastCommonIndex, ancestries);
} else {
return lastCommon;
}
} else {
throw new Error("Couldn't find intersection");
}
}
/**
* Build an array of node paths containing the entire ancestry of the current node path.
*
* NOTE: The current node path is included in this.
*/
function getAncestry() {
var path = this;
var paths = [];
do {
paths.push(path);
} while (path = path.parentPath);
return paths;
}
function inType() {
var path = this;
while (path) {
var _arr3 = arguments;
for (var _i3 = 0; _i3 < _arr3.length; _i3++) {
var type = _arr3[_i3];
if (path.node.type === type) return true;
}
path = path.parentPath;
}
return false;
}
/**
* Checks whether the binding for 'key' is a local binding in its current function context.
*
* Checks if the current path either is, or has a direct parent function that is, inside
* of a function that is marked for shadowing of a binding matching 'key'. Also returns
* the parent path if the parent path is an arrow, since arrow functions pass through
* binding values to their parent, meaning they have no local bindings.
*
* Shadowing means that when the given binding is transformed, it will read the binding
* value from the container containing the shadow function, rather than from inside the
* shadow function.
*
* Function shadowing is acheieved by adding a "shadow" property on "FunctionExpression"
* and "FunctionDeclaration" node types.
*
* Node's "shadow" props have the following behavior:
*
* - Boolean true will cause the function to shadow both "this" and "arguments".
* - {this: false} Shadows "arguments" but not "this".
* - {arguments: false} Shadows "this" but not "arguments".
*
* Separately, individual identifiers can be flagged with two flags:
*
* - _forceShadow - If truthy, this specific identifier will be bound in the closest
* Function that is not flagged "shadow", or the Program.
* - _shadowedFunctionLiteral - When set to a NodePath, this specific identifier will be bound
* to this NodePath/Node or the Program. If this path is not found relative to the
* starting location path, the closest function will be used.
*
* Please Note, these flags are for private internal use only and should be avoided.
* Only "shadow" is a public property that other transforms may manipulate.
*/
function inShadow(key) {
var parentFn = this.isFunction() ? this : this.findParent(function (p) {
return p.isFunction();
});
if (!parentFn) return;
if (parentFn.isFunctionExpression() || parentFn.isFunctionDeclaration()) {
var shadow = parentFn.node.shadow;
// this is because sometimes we may have a `shadow` value of:
//
// { this: false }
//
// we need to catch this case if `inShadow` has been passed a `key`
if (shadow && (!key || shadow[key] !== false)) {
return parentFn;
}
} else if (parentFn.isArrowFunctionExpression()) {
return parentFn;
}
// normal function, we've found our function context
return null;
}